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The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as
hydrogen, but it is often neglected in simulations due to the high computational overhead involved.
It has recently been shown that zero-point energy effects can be included comparatively cheaply
in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics
with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to
accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical
result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects.
The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem
and to liquid water. © 2011 American Institute of Physics. [doi:10.1063/1.3556661]

I. INTRODUCTION

Atomistic computer simulations have become an impor-
tant complement to experimental measurements in studies of
a wide variety of physical, chemical, and biological systems.
However, in order to reduce computational effort that is
required for larger systems, a number of approximations are
typically made in these simulations. One that is commonly
employed is to assume that the atomic nuclei behave as
classical particles, even when the interactions between them
are obtained from an ab initio calculation. This is a reason-
able assumption for heavy atoms at high temperatures. But
for lighter atoms—and hydrogen in particular—significant
deviations are to be expected from classical behavior even at
room temperature.

When empirical interaction potentials are used to com-
pute the forces acting on the nuclei, nuclear quantum ef-
fects are often implicitly accounted for, because force fields
are typically parameterized so as to agree with experimental
data when used in classical molecular dynamics simulations.
When ab initio methods are used to describe the interactions
between the nuclei, there is no such parameterization for nu-
clear quantum effects, and the error that results from assuming
purely classical behavior of the nuclear motion is often com-
parable to that stemming from an approximate treatment of
electron correlation.1

The conventional approach to including nuclear quantum
effects exploits the isomorphism between the quantum me-
chanical partition function of the physical system and the clas-
sical partition function of an extended problem consisting of a
necklace (or ring polymer) of replicas of the system in which
corresponding atoms are connected by harmonic springs.2 As
the number of replicas (or beads of the necklace) is increased,
this imaginary time path integral3 (PI) method samples an en-
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semble that converges systematically to that of the quantum
problem with distinguishable particles, at the expense of a
computational effort that increases in proportion to the num-
ber of beads.

Methods have been devised to reduce this effort by
splitting the calculation of forces into an inexpensive,
short-ranged contribution that is computed on every bead,
and a long-range contribution that is evaluated on a con-
tracted ring polymer with fewer beads.4–6 These methods
are straightforward to implement in simulations with empir-
ical force fields. However they cannot presently be used in
ab initio simulations, where the splitting of the forces into
an inexpensive short-range contribution plus a more ex-
pensive long-range contribution is significantly more dif-
ficult to arrange. Approximate quantum methods such as
the Feynman–Hibbs3, 7 approach are also difficult to use in
ab initio simulations, because they require the computation of
the Hessian.

A more general approach to reducing the effort of path
integral simulations is therefore called for, and there are cer-
tain indications in the literature that this might now be pos-
sible. In particular, it has recently been shown that colored
noise, generalized Langevin equation (GLE) thermostats can
be used not only to enhance the sampling of classical and path
integral molecular dynamics,8, 9 but also to modify conven-
tional molecular dynamics so as to include nuclear quantum
effects in mildly anharmonic systems in which zero-point en-
ergy plays a significant role.10 This approach involves neg-
ligible overhead with respect to purely classical dynamics,
it provides very naturally the proton momentum distribution
(which is relevant for comparison with inelastic neutron scat-
tering experiments) and can be applied with the same ease to
empirical and ab initio force fields. However, it does not pro-
vide a satisfactory description of more subtle quantum effects
such as tunnelling, and its accuracy cannot be systematically
improved.
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In this paper, we will show that it is possible to com-
bine a GLE thermostat with path integral molecular dynamics
(PIMD) in such a way as to exploit the best features of both
techniques. In particular, by tuning the properties of the corre-
lated noise in an appropriate GLE, we will show that the sys-
tematic convergence of PIMD to the exact quantum mechan-
ical result can be greatly accelerated, leading to significant
computational savings for a given level of accuracy. The re-
sulting PI+GLE scheme provides an equally reliable descrip-
tion of zero point energy and tunnelling effects, it is equally
applicable to simulations with empirical and ab initio force
fields, and unlike the original single-bead “quantum thermo-
stat” discussed above it can be systematically improved sim-
ply by increasing the number of path integral beads.

The outline of the paper is as follows. In Sec. II we
briefly recall a few concepts from path integral and general-
ized Langevin equation methods and describe our strategy to
have them work in synergy. In Sec. III we present a system-
atic study of a one-dimensional quartic double well potential
discussing the effect of zero point energy and tunnelling on
the convergence of our method. In Sec. IV we examine how
the method performs for liquid water, and in Sec. V we draw
our conclusions.

II. COMBINING PATH INTEGRALS WITH THE
GENERALIZED LANGEVIN EQUATION

A. Path integral methods

Let us first recall the basic principles of imaginary time
path integral methods, so as to introduce our notation. We will
only discuss the one-dimensional case and refer the reader to
the literature2, 3, 11–15 for a more detailed discussion.

Consider the Hamiltonian for a particle in a one-
dimensional potential,

Ĥ = 1
2 p̂2 + V (q̂), (1)

where p̂ and q̂ are the mass-scaled momentum and position
operators and the potential V (q) is assumed to be such that
the quantum mechanical partition function

Z = tr[e−Ĥ/kB T ] (2)

is well defined. The path integral formalism avoids the so-
lution of the Schrödinger equation for the Hamiltonian in
Eq. (1) and allows one instead to sample configurations con-
sistent with the quantum mechanical equilibrium distribu-
tion by exploiting an isomorphism with an extended classical
problem.2 Indeed a standard Trotter-product15 approximation
to the Boltzmann operator in Eq. (2) yields the following ex-
tended phase space expression for the partition function

Z ≈ Z P = 1

(2π¯)P

∫
dP p

∫
dP q e−HP (p,q)/PkB T , (3)

where HP (p, q) is the classical Hamiltonian of a fictitious ring
polymer composed of P replicas of the system connected by
harmonic springs

HP (p, q) =
P−1∑
j=0

[
1

2
p2

j + V (q j ) + 1

2
ω2

P (q j − q j+1)2

]
, (4)

with ωP = PkB T/¯ and qP ≡ q0. The error in this approxi-
mation is O(P−2) and so vanishes to leave the exact quantum
mechanical result in the limit as P → ∞.15

The momenta are often integrated out of Eq. (3) to leave
a purely configurational integral which forms the basis of the
path integral Monte Carlo (PIMC) technique.11 One can how-
ever retain the momenta, and describe the dynamical evolu-
tion of the ring polymer by means of Hamilton’s equations.
This is the PIMD approach,12, 13 which provides a particu-
larly efficient way to sample the configuration space in sit-
uations such as molecular liquid simulations in which an ef-
fective PIMC calculation would require complicated collec-
tive moves. A fully converged PIMD calculation produces the
exact thermodynamic and structural properties of the quan-
tum mechanical system. Although it is something of an aside
to the present work, in which we shall be concerned exclu-
sively with static equilibrium properties, it is also now well
established that the centroid molecular dynamics16, 17 and ring
polymer molecular dynamics18, 19 generalizations of PIMD
can be used to provide quite reasonable estimates of dynami-
cal properties such as diffusion coefficients and chemical re-
action rates.

The extension to three dimensions and to an arbitrary
number of interacting distinguishable particles is straightfor-
ward. But rather than describing this extension here, let us
consider instead the simple case of a one-dimensional har-
monic potential, V (q) = ω2q2/2. The result will be used in
what follows. For this simple model, the integral in Eq. (3) can
be evaluated by transforming to the P normal modes {qk}P−1

0
of the ring polymer with frequencies

ωk =
√

ω2 + 4ω2
P sin2(kπ/P). (5)

It is then easy to show that the equilibrium position distri-
bution of each bead of the ring polymer will be a Gaussian
centred on q = 0, with a variance

〈q2〉P = 1

P

P−1∑
k=0

〈
q2

k

〉 = kB T
P−1∑
k=0

1

ω2
k

, (6)

which converges to the correct quantum mechanical thermal
expectation value

〈q2〉 = ¯

2ω
coth

¯ω

2kB T
(7)

in the limit as P → ∞.

B. Generalized Langevin equations

It has recently been shown that an appropriate general-
ized Langevin equation thermostat can be used to sample con-
figurations for a harmonic oscillator that are consistent with
the quantum mechanical variance in Eq. (7) using just a sin-
gle replica of the system, thereby avoiding the overhead of a
P-bead PI simulation.10

The basic idea behind GLE thermostats is to construct
a linear, Markovian stochastic differential equation (SDE)
in an extended momentum space, which is coupled to the
Hamiltonian dynamics in such a way that the equations of
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motion read

q̇ = p
(8)(

ṗ

ṡ

)
=

(
−V ′(q)

0

)
−

(
app aT

p

āp A

)(
p

s

)
+

(
bpp bT

p

b̄p B

)(
ξ

)
,

where ξ is a vector of n + 1 uncorrelated Gaussian random
numbers with 〈ξi (t)ξ j (0)〉 = δi jδ(t). It can be shown that
the resulting trajectories are statistically equivalent to those
obtained from a non-Markovian Langevin equation involving
only p and q,20

q̇ = p,
(9)

ṗ = −V ′(q) −
∫ t

−∞
K (t − s)p(s)ds + ζ (t),

where the friction kernel K (t) and the noise correlation func-
tion H (t) = 〈ζ (t)ζ (0)〉 are related by analytical expressions
to the matrices that appear in Eq. (8). These relationships, to-
gether with a more detailed discussion, can be found in Ref. 8.

The only nonlinear term in Eq. (8) is the force V ′(q). If
the potential is harmonic, the force depends linearly on q, and
the whole set of equations describe an Ornstein–Uhlenbeck
process,21 which can be solved analytically to yield closed-
form expressions for static and dynamic properties of the tra-
jectory. Based on these expressions, one can iteratively refine
the parameters ap, aT

p , ap, A, bp, bT
p , bp, and B in Eq. (8) sub-

ject to certain positivity constraints until the desired response
of the thermostat is obtained.8

When considering the generalization of this strategy to
a multidimensional harmonic problem, one realizes that, be-
cause of the linear nature of the SDE and of the consequent
rotational invariance, the dynamics will conform to the an-
alytical predictions obtained from the Ornstein–Uhlenbeck
process even if the thermostats are applied to Cartesian co-
ordinates, without the need to diagonalize the Hessian and
transform to normal modes. Moreover, it has been demon-
strated in previous work that the analytical properties of the
thermostat obtained in the harmonic limit provide a meaning-
ful prediction of its behavior for anharmonic problems with a
similar range of frequencies.8

By employing this strategy it is possible to obtain a num-
ber of useful effects, such as efficient sampling of the canon-
ical distribution in constant-temperature MD. In this appli-
cation, a fluctuation–dissipation theorem must hold, which
relates the friction kernel and the memory of the noise in
Eq. (9) through H (t) = kB T K (t). More generally, when this
condition is not imposed, one obtains a nonequilibrium dy-
namics in which a frequency-dependent effective tempera-
ture is enforced. Either way, one can calculate the station-
ary covariance of the harmonic dynamics in the (q, p, s) ex-
tended phase space, and the mean squared fluctuations of
the positions and momenta, which we will label cqq (ω) and
cpp(ω), respectively. It is then possible to design a GLE
dynamics which behaves as a quantum thermostat;10 i.e.,
which enforces probability distributions of positions and mo-
menta that are consistent with those expected for a quantum

harmonic oscillator,

cqq (ω) = 1

ω2
cpp(ω) = ¯

2ω
coth

¯ω

2kB T
, (10)

and does so over a wide range of frequencies.
When applying this idea to a multidimensional system

one faces the problem of zero-point energy leakage.22 Anhar-
monic coupling causes a flow of heat from high-frequency
to low-frequency vibrations and a departure from the desired
behavior in Eq. (10). This problem can be mitigated to some
extent by exploiting the flexibility of the GLE in Eq. (8) to
enhance the coupling strength of the thermostat and ensure
that all vibrations are maintained at the correct effective tem-
perature. This approach has been shown to give satisfactory
results in a number of realistic, condensed-matter applica-
tions, ranging from the calculation of diamond–graphite co-
existence curves23 to the proton momentum distribution in
hydrogen-storage materials.24

Being simple to implement and computationally inexpen-
sive, this quantum thermostat is an important step toward a
routine treatment of nuclear quantum effects in molecular dy-
namics. It lacks however two desirable features; namely, the
possibility of treating more subtle quantum effects such as
tunnelling and the possibility of increasing the accuracy in a
systematic way. Since both these requirements are met by PI
methods, one suspects that it might be possible to develop a
synergistic approach which combines path integrals with the
GLE thermostat so as to obtain accurate results without the ef-
fort of a fully-converged PI simulation. The implementation
of such a PI+GLE approach is the subject of Sec. II C.

C. A synergistic combination

When a GLE thermostat is applied to a path integral
molecular dynamics simulation, the internal frequencies of
the ring polymer necklace will be present along with the phys-
ical vibrations of the system. It is therefore once again in-
structive to consider a harmonic model with frequency ω, for
which both the ring polymer frequencies and the stochastic
dynamics can be treated analytically.

In order to construct a nonequilibrium Langevin dynam-
ics that enforces the quantum mechanical equilibrium distri-
bution corresponding to the frequency-dependent fluctuations
in Eq. (10), one must allow in the path integral context for the
fact that the average of q2 is obtained from a sum over the
ring polymer normal modes,

〈q2〉P = 1

P

P−1∑
k=0

〈
q2

k

〉 = 1

P

P−1∑
k=0

cqq (ωk), (11)

where the normal mode frequencies ωk are given in Eq. (5).
Here the last equality holds if a GLE which results in the
frequency-dependent position fluctuation cqq (ω) has been ap-
plied separately to each bead of the ring polymer.

It follows from this that one cannot simply tune the pa-
rameters in the GLE acting on each bead of the necklace
so that cqq (ω) is given by Eq. (10). Instead, the appropriate
frequency-dependent distribution to be enforced depends on
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the number of beads in the necklace and can be obtained by
solving

1

P

P−1∑
k=0

cqq (ωk) = ¯

2ω
coth

¯ω

2kB T
. (12)

The first task is therefore to solve this functional equation for
cqq (ω), recalling again that the frequencies ωk are related to
the frequency ω of the harmonic oscillator by Eq. (5); the so-
lution will be a universal function of ω that is equally ap-
plicable to any harmonic oscillator, just as in the case of the
original quantum thermostat10 that enforces the condition on
cqq (ω) in Eq. (10).

Before we describe our approach to solving Eq. (12),
let us transform it into dimensionless form by defining
x = ¯ω/2kB T , h(x) = x coth x , and gP (x) = (kB T/P)
× (2x/¯)2cqq (2xkB T/¯). With these definitions, Eq. (12)
becomes

P−1∑
k=0

gP (xk)

x2
k /x2

= h(x), (13)

where

x2
k = x2 + P2 sin2 kπ

P
. (14)

The solution to Eq. (13) is not unique, and one must pick a
particular solution by means of appropriate boundary condi-
tions. In particular, one would like to enforce a physical be-
havior on the solution, with no discontinuities and reasonable
asymptotic forms in the x → 0 and x → ∞ limits. The ten-
tative solution

g(0)
P (x) = h(x/P), (15)

satisfies these requirements, and it is a good approximation
to gP (x) from several points of view. First of all, it is the ex-
act solution in the one-bead case (which corresponds to the
bare quantum thermostat) and in the infinite bead limit, where
it yields a constant effective temperature on all frequencies
(which is correct, as in this case PIMD alone is sufficient to
converge to the appropriate distribution). It also provides the
appropriate large-x limit for a smooth solution to Eq. (13), for
arbitrary P .

In order to refine this tentative solution, one can cast
Eq. (13) into a fixed-point iteration, by singling out the k = 0
term:

gP (x) = h(x) −
P−1∑
k=1

gP (xk)

x2
k /x2

. (16)

We have found empirically that a self-consistent iterative pro-
cedure that yields an exact solution gP (x) to Eq. (13) to arbi-
trary precision can be obtained by stabilizing Eq. (16) with a
mixing strategy,

g(0)
P (x) = h(x/P),

(17)

g(i+1)
P (x) = α

[
h(x) −

P−1∑
k=1

g(i)
P (xk)

x2
k /x2

]
+ (1 − α)g(i)

P (x).

In particular, the mixing parameter α = 1/P was found to
give a sufficiently fast and convergent iteration for all the
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FIG. 1. (a) Relative error in the estimates of g8(x) at different iterations of
the self-consistent procedure in Eq. (17), with α = 1/8. The wiggles which
appear after many iterations occur because each g(i)

P (x) is approximated as

a spline interpolation before computing g(i+1)
P (x). These wiggles can be sys-

tematically reduced by using a denser grid in x . (b) Converged gP (x) curves
for different bead numbers. Note that the curves with larger values of P are
flat up to larger values of x .

numbers of beads we tried. The convergence of g(i)
P (x) to

gP (x) is shown in Fig. 1 for P = 8, along with examples of
the resulting converged solutions for other values of P . Tabu-
lated values of these solutions for P ranging from 1 to 128 can
be downloaded from an on-line repository.25 Once one has a
converged gP (x), the frequency-dependent position fluctua-
tion cqq (ω) in Eq. (11) is given by

cqq (ω) = (PkB T/ω2)gP (¯ω/2kB T ), (18)

and the only remaining problem is to design a GLE that can
be used to enforce this fluctuation on each ring polymer bead.

D. Fitting and implementation

The design of a GLE consistent with cqq (ω) in Eq. (18)
consists of optimizing the matrices in Eq. (8) until the desired
response of the thermostat is obtained. As has been found for
a variety of other applications of the GLE,8–10, 26 the efficacy
of the resulting PI+GLE scheme will depend on the strategy
by which the optimization is performed and on the additional
criteria besides fitting cqq (ω) that are used to define the merit
function for the optimization. For applications of the quantum
thermostat to anharmonic problems the strength of the cou-
pling between the thermostat and the Hamiltonian dynamics
and the efficiency of the sampling can be just as important
as the agreement between cqq (ω) and the target function in
Eq. (18). The possibility of improving the accuracy systemat-
ically by increasing the number of beads makes zero-point en-
ergy leakage and other anharmonic effects a lesser concern in
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FIG. 2. Comparison between the properties of the stochastic dynamics which
result from the fitting strategy used in the present work (left column) and that
used for the original quantum thermostat (see Ref. 10) (right column), for
simulations at T = 298 K. Note that by sacrificing the fit to the fluctuations
of momenta [cpp(ω)] it is possible to obtain a perfect fit to cqq (ω) and a bet-
ter sampling efficiency κV (ω) = 1/[τV (ω)ω], where τV (ω) is the correlation
time of the potential energy for a harmonic oscillator with frequency ω. In the
case of PI+GLE it is less essential to enforce strong coupling to avoid zero
point energy leakage, and it is therefore possible to avoid the overdamping
which hinders the sampling in the case of the original quantum thermostat.
This overdamping is clear from the bottom right-hand panel, which shows
that K (ω) 	 ω at low frequencies where K (ω) is the Fourier transform of
the memory kernel in Eq. (9).

the present context. However, if systematic convergence is to
be achieved, it is advisable that the sampling efficiency does
not differ dramatically between the fits for different numbers
of beads.

In the case of the original quantum thermostat described
in Ref. 10, we chose to constrain cpp(ω) = ω2cqq (ω) as in
Eq. (10). This had the advantage of providing ready access to
the quantum mechanical momentum distribution, which is a
quantity of direct relevance to recent deep inelastic neutron
scattering experiments. However, by constraining cpp(ω) in
this way, we found that we had to enforce a strongly over-
damped regime at low frequencies in order to avoid zero point
energy leakage in applications to multidimensional systems.10

In the present PI+GLE scheme, as in PIMD itself, the ring
polymer momenta lose all physical significance as soon as
there is more than one bead, and extracting the quantum me-
chanical momentum distribution requires a considerably more
intricate calculation.27 When it comes to fitting the GLE, it
is therefore more natural to regard the momenta simply as a
sampling device, and to focus exclusively on the fluctuations
of configurations cqq (ω), as we have already done in our de-
scription of PI+GLE in Sec. II C.

As shown in Fig. 2, this leaves significantly more free-
dom in the fit even in the case of just one bead. The extra
freedom allows us to reproduce the desired cqq (ω) with a
maximum discrepancy smaller than 0.5% and to achieve high
sampling efficiency over a broad range of frequencies, yield-
ing a sampling performance comparable to that of an “optimal

sampling” GLE.8, 9 To give another example involving more
beads, the self-diffusion coefficient for a model of liquid wa-
ter (see Sec. IV)—which in this context can only be regarded
as a measure of the sampling efficiency for slow, collective
motion—is reduced by less than 50% in a well-converged
(eight bead) PI+GLE simulation compared to NVE dynam-
ics, whereas the original (one bead) quantum thermostat de-
creases the diffusion coefficient of the same model by a factor
of 10.

Having obtained a nearly constant sampling efficiency is
also beneficial to the transferability of the fitted parameters, as
discussed in Refs. 8 and 9. As a matter of fact, the very same
parameterization has been adopted for both of the examples
given below, which are as different as a one-dimensional
quartic double well and liquid water. With an appropriate
scaling,8, 10 these GLE parameters can be safely adopted in
all circumstances where the maximum physical frequency
present in the system is smaller than 35kB T/¯. The GLE
parameters we have used in the present study are available
up to P = 16 and may be downloaded from an online
repository.25

The details of how we actually optimized the GLE ma-
trices for the present PI+GLE application are rather technical
and less important than the criteria employed for the optimiza-
tion that we have just described. A comprehensive discussion
of the optimization of GLE matrices has recently been given
elsewhere,8 and we used exactly the same techniques in the
present study. The implementation of a GLE thermostat into
a PIMD code has also been discussed in detail in a recent
paper,9 where it was shown to be essentially no more com-
plicated than adding a thermostat to a classical molecular dy-
namics simulation. However, in the case of PI+GLE there are
a few additional points that we do need to make.

First of all, the dynamics in PI+GLE must be performed
using physical bead masses, as opposed to the alternative
masses that are sometimes used in path integral schemes.
Unless physical bead masses are used the frequencies of the
necklace will be different from those in Eq. (5), and Eq. (14)
will have to be modified accordingly; this will change the
functional equation for gP (x) in Eq. (13) and the new equa-
tion will have to be solved from scratch. The equations of mo-
tion can be integrated efficiently with physical bead masses
by performing a normal mode transformation for the free ring
polymer evolution9 and/or employing a multiple time step
scheme.28, 29

Another important observation is that, at variance with
canonical sampling GLE schemes in which the free particle
propagation of the GLE preserves the equilibrium distribu-
tion, the stationary probability distribution of the PI+GLE
scheme requires an accurate integration of the stochastic dif-
ferential equations of motion on the timescale of the fastest
modes. For this reason, whenever a multiple time step inte-
grator is used, the thermostat should be applied in the inner
loop. As a consequence, the integration of the GLE introduces
a sizeable computational overhead, which can be significant
in cases when the calculation of physical forces is inexpen-
sive. In the case of ab initio molecular dynamics, which is the
primary target for the present method, the overhead will be
completely negligible.
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FIG. 3. Probability density for a hydrogen atom in a quartic double well
potential with the minima separated by 0.6 Å and a barrier height of 1000
K. All simulations were performed with a target temperature of 300 K. The
exact quantum mechanical result (dashed black line) was obtained by nu-
merical solution of the Schrödinger equation, the contributions of the various
eigenstates being averaged with the appropriate Boltzmann weight. The four
panels compare this exact result with the PIMD and PI+GLE results with
increasing bead numbers.

III. THE QUARTIC DOUBLE WELL

As mentioned in the Introduction, one of the fundamental
shortcomings of the original quantum thermostat10 is its in-
ability to provide a realistic description of tunnelling effects.
The one-dimensional double well potential,

V (q) = h

[(
2q

d

)2

− 1

]2

, (19)

in which both zero-point energy and tunnelling are impor-
tant and can be tuned by adjusting the height h of the barrier
and the distance d between the minima, therefore provides an
ideal first example with which to benchmark the performance
of our combined PI+GLE method.

In Fig. 3 we report the particle density p(q) obtained in
PIMD and PI+GLE simulations of this potential with d = 0.6
Å and h = 1000 K at a temperature of 300 K using different
numbers of beads. By comparing the curves with the exact
finite-temperature density

ρ(q) =
∑

i

e−εi /kB T |ψi (q)|2
/ ∑

i

e−εi /kB T , (20)

where εi and ψi are the eigenvalues and eigenfunctions of the
Schrödinger equation, one sees that the use of a GLE dramat-
ically improves the results even when P = 1. By increasing
P systematic convergence to exact result is achieved, and the
convergence is greatly accelerated by the Langevin dynamics.

In order to characterize quantitatively the convergence of
the density, we computed the distance between p(q) and ρ(q),
as a function of the parameters of the potential and the bead
number. For the distance metric we employed the square root

1 2 4 8 16 32
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1 2 4 8 16 32
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FIG. 4. Distance between the exact density ρ(q) and the densities p(q) ob-
tained from PIMD and PI+GLE simulations with different bead numbers,
for the quartic double well potential in Eq. (19). Six different combinations
of parameters of the double well potential have been tested. Note that in all
cases the use of a GLE leads to a significant improvement in the estimate of
the density.

of the Jensen–Shannon divergence

d2
J S(p,ρ)= 1

2

∫ ∞

−∞

[
p(q)ln

2p(q)

p(q)+ρ(q)
+ρ(q)ln

2ρ(q)

p(q)+ρ(q)

]
dq,

(21)

which is a metric that is widely used to compare probability
distributions.30

In Fig. 4 we present the convergence of p(q) to ρ(q) as
the number of beads is increased. The simulations were per-
formed using the mass of a hydrogen atom, different values of
d and h as indicated in the figure, and a time step of 0.1 fs. A
very small time step was needed because we integrated the PI
equations of motion directly using the velocity Verlet method,
without exploiting the exact free ring polymer evolution that
becomes possible in the normal mode representation.9 For
each set of parameters we ran PIMD and PI-GLE trajectories
for 20 ns.

It is clear from Fig. 4 that the PI-GLE simulations yield a
significantly better estimate of the finite-temperature density
of the quartic double well than the PIMD simulations, even in
the regime of small d and large h where tunnelling plays an
important role. The addition of the GLE provides a given level
of accuracy with an effort that is between two and eight times
smaller than with a standard PI depending on the parameters
of the potential and on the accuracy required.

As the density approaches the exact ρ(q), all physical ob-
servables that depend on the position of the particle converge
to their quantum mechanical expectation values. In Fig. 5 we
have plotted the average potential energy computed from the
same trajectories that were used to compute the densities in
Fig. 4. Again, the use of a GLE thermostat consistently im-
proves the quality of results.
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FIG. 5. Average potential energy for a hydrogen atom in a quartic double
well potential computed by PIMD and PI+GLE, as a function of the number
of beads and for different parameters of the potential. The exact, quantum
mechanical expectation value is marked with a line.

IV. LIQUID WATER

In Sec. III we have demonstrated, in a simple one-
dimensional case, that an appropriately constructed GLE
can be used to accelerate the convergence of path integral
molecular dynamics to the exact quantum mechanical
probability distribution. However, as discussed in earlier
publications,8, 10 when applying the quantum thermostat to a
multidimensional problem, one must be wary of zero point
energy leakage. The GLE sets the various normal modes to
different effective temperatures, and energy may flow from
hot (high frequency) to cold (low frequency) modes because
of anharmonic couplings.

To assess the behavior of the combined PI+GLE strat-
egy in this respect, and to evaluate the computational savings
that can be expected from the GLE in a more typical appli-
cation, we have performed some additional simulations for
liquid water. For these simulations, we used a recently devel-
oped flexible water model that was fit to reproduce a wide va-
riety of properties of the liquid in path integral simulations.31

This avoids the double counting of nuclear quantum effects
that would result from the use of a force field fit to reproduce
experimental data in classical dynamics. We performed simu-
lations with both conventional PIMD and PI+GLE using dif-
ferent numbers of beads. The refined ring polymer contraction
scheme of Markland and Manolopoulos5 was used to reduce
the computational effort, with the long-range electrostatic in-
teractions beyond 5 Å contracted to the ring polymer centroid.
The use of this scheme has been shown previously to provide
significant computational savings in empirical force field sim-
ulations without affecting the accuracy of the results.5

Simulations were performed with a target temperature
T = 298 K. We used a multiple-time step scheme with an
outer time step of 0.75 fs and covalently bonded interactions
computed every 0.15 fs. We ran 3.15 ns trajectories for each
set of parameters, with the first 150 ps used for equilibration.
Ergodic constant-temperature sampling was achieved in the
PIMD simulations by applying a targeted stochastic scheme

FIG. 6. The average value of the potential energy and the virial kinetic en-
ergy for a simulation of a flexible water model (see Ref. 31) at T = 298 K,
plotted as a function of the number of beads. The results obtained with con-
ventional PIMD and PI+GLE are compared, and the value of 〈V 〉 obtained
with the original quantum thermostat (see Ref. 10) (QT) is also reported.

to the internal modes of the necklace9 and a global stochastic
velocity rescaling to the centroid.32

In Fig. 6 we report the expectation values of the poten-
tial energy and the centroid virial kinetic energy, which were
computed using standard path integral estimators.14 In this
case, the GLE is seen to be extremely useful, and leads to
a much faster convergence of averages compared to conven-
tional PIMD. Interestingly, we found that to converge aver-
age energies to an error smaller than 1 kJ/mol in the PIMD
simulations, P should be increased well beyond the 32 beads
that are generally adopted for room-temperature water. Con-
versely, PI+GLE yields results in perfect agreement with a
128 bead PIMD simulation using fewer than 16 beads.

As a more sensitive benchmark of the convergence of
the properties of quantum water we have also computed the
constant-volume specific heat cV , which is known to require
very large values of P for an accurate determination.33 The
value of cV and the corresponding statistical uncertainty were
obtained from a quadratic fit to the values of 〈V 〉 and 〈T 〉
computed at 293, 298, and 303 K. The PI+GLE method is
again seen to perform exceedingly well in this test (see Fig. 6).
The convergence is somewhat accelerated by a fortuitous can-
cellation between the errors in the PI+GLE estimates of the
potential and kinetic energy contributions to cV , which are
however both very well converged by the time P 
 8.

Comprehensive results for the convergence of structural
properties of water are reported in Fig. 7, in which we
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FIG. 7. Errors in the radial distribution functions of liquid water at T = 298 K obtained in low-P simulations using PIMD and PI+GLE, relative to a fully
converged PIMD reference simulation with 128 beads. Note that the scale of the y-axis is greatly magnified as P is increased and the g’s become smaller.
The results obtained using the original quantum thermostat (see Ref. 10) (QT) are also reported in the panels with P = 1. The statistical error in the distribution
functions is of the order of 10−3.

systematically examine the radial distribution functions that
are obtained with different bead numbers. Here again the GLE
helps tremendously in accelerating the convergence of the PI
calculation, in particular in the region of the intramolecular
peaks, which are strongly affected by nuclear quantum ef-
fects. The only case in which the PI+GLE simulation is in
worse agreement agreement with the exact result than the
PIMD simulation is when the oxygen–oxygen g(r ) is com-
puted with too few beads (P = 1 and 2). This is a conse-
quence of the zero-point energy leakage in the PI+GLE sim-
ulation, which heats up low frequency degrees of freedom and
washes out the long-range features from gOO(r ). By increas-
ing the strength of the thermostat in the low-frequency region
(as is done for instance in the case of the original quantum
thermostat—see Sec. II D) it is possible to mitigate this effect,
at the expense of a greater disturbance on diffusive modes and
hence on the efficiency of sampling. The PI+GLE strategy
allows one to counter the effect of zero point energy leakage
with a moderate increase in the number of beads, and indeed
the PI+GLE radial distribution functions for liquid water are
seen to be significantly more accurate than the PIMD radial
distribution functions in Fig. 7 for all P ≥ 4.

Combining the results in Figs. 6 and 7, one sees that
PI+GLE provides the same accuracy in the thermodynamic
and structural properties of liquid water with eight beads as
PIMD provides with 32 beads. This is the level of accuracy
that is commonly accepted for room-temperature water sim-
ulations, and adding an appropriate GLE to the PI simulation
allows it to be achieved with a four-fold reduction in the num-
ber of beads. The comparison becomes even more favorable
if higher accuracy is required, with a 16-bead PI+GLE sim-
ulation being as accurate as a 128-bead PIMD simulation for
all of the observables we have considered.

V. CONCLUSIONS

In the present paper we have discussed and thoroughly
demonstrated how a properly designed generalized Langevin
equation can be used to accelerate the convergence of path
integral molecular dynamics to the exact quantum mechani-
cal thermal expectation values. This leads to substantial sav-
ings in computational effort, the number of beads required to
obtain a given level of accuracy being reduced by a factor
of 4 or more. The original (one-bead) quantum thermostat10
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provides an even cheaper way to include nuclear quantum ef-
fects in mildly anharmonic systems, but it is an inherently ap-
proximate technique. The present PI+GLE combination cap-
tures tunnelling effects as well as zero point energy effects,
and it can be systematically improved to give the exact quan-
tum mechanical result simply by increasing the number of
path integral beads. We expect that this combination will be
particularly valuable when used in conjunction with ab initio
molecular dynamics, in which the forces acting on the nuclei
are so expensive to evaluate that nuclear quantum effects have
only seldom been considered in the past.

One final observation is that we have concentrated ex-
clusively in this paper on the standard second order Trotter
product path integral in Eqs. (3) and (4). Another way to re-
duce the number of path integral beads is to use a higher-order
imaginary time propagator, and some interesting progress
has been made in this direction over the years.34–37 This ap-
proach is fundamentally different from the approach we have
investigated here and potentially complementary to it. One
could in principle develop a GLE scheme to accelerate the
convergence of any imaginary time propagator, including the
more promising of the higher-order propagators that have
been suggested in the literature. In this way, one might hope
to be able to reduce the number of beads even further, and
make the inclusion of nuclear quantum effects in ab initio
simulations almost routine. In any event, the results we have
presented in this paper clearly demonstrate the potential of the
generalized Langevin equation as a computational tool for ac-
celerating the convergence of PIMD.
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