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The path integral molecular dynamics �PIMD� method provides a convenient way to compute the
quantum mechanical structural and thermodynamic properties of condensed phase systems at the
expense of introducing an additional set of high frequency normal modes on top of the physical
vibrations of the system. Efficiently sampling such a wide range of frequencies provides a
considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin
equation �PILE� thermostat which exploits an analytic knowledge of the free path integral normal
mode frequencies. We also apply a recently developed colored noise thermostat based on a
generalized Langevin equation �GLE�, which automatically achieves a similar, frequency-optimized
sampling. The sampling efficiencies of these thermostats are compared with that of the more
conventional Nosé–Hoover chain �NHC� thermostat for a number of physically relevant properties
of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE
thermostat is found to perform just as well as the NHC thermostat while allowing for a
computationally more efficient implementation. The GLE thermostat also proves to be very robust
delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these
simple stochastic thermostats will therefore find useful application in many future PIMD
simulations. © 2010 American Institute of Physics. �doi:10.1063/1.3489925�

I. INTRODUCTION

Atomistic computer simulations are now routinely used
to shed light on the behavior of condensed phase systems of
interest in physics, chemistry, biology, and materials science.
Typically these simulations assume that the nuclei can be
treated as classical particles, even when the interactions be-
tween them are obtained using ab initio methods. For sys-
tems comprised of heavy atoms at high temperatures, this is
often quite a reasonable assumption. However, whenever any
light atoms such as hydrogen are present at room tempera-
ture or below, quantum mechanical zero point energy and
tunneling effects in the nuclear motion can play an important
role in determining the properties of the system.

Since the 1980s it has been possible to include quantum
mechanical effects in simulations of structural and thermo-
dynamic properties such as radial distribution functions and
average potential and kinetic energies by performing imagi-
nary time path integral1,2 �PI� simulations. These simulations
exploit the isomorphism between the quantum mechanical
partition function of the physical system and the classical
partition function of an extended problem consisting of a
necklace of replicas of the system connected by harmonic
springs.3

Early implementations of this approach used Monte
Carlo �MC� methods to sample the configuration space,4 but
these methods often proved to be inefficient unless carefully

constructed collective moves were used. It was then sug-
gested by Parrinello and Rahman5,6 that momenta could be
assigned to the replicas, allowing the sampling to be per-
formed by molecular dynamics �MD�. In principle, this al-
lows many of the techniques originally developed for use in
classical MD simulations to be used in a path integral con-
text.

In practice, the stiff harmonic springs between the repli-
cas lead to inefficient and nonergodic dynamics when micro-
canonical trajectories are used to generate ensemble
averages.7 A simple stochastic Andersen thermostatting
scheme8 was originally suggested to overcome this problem.9

However, stochastic approaches have since largely been
abandoned following the development of deterministic
Nosé–Hoover chain thermostats,10–12 which have now be-
come the gold standard for performing path integral molecu-
lar dynamics �PIMD� simulations.13 These thermostats gen-
erate ergodic, canonical averages and provide a conserved
quantity which can be used to check the integration time
step, at the expense of introducing sets of auxiliary chain
variables which add to the complexity of the calculation.12,13

In the last few years stochastic approaches have regained
attention in a variety of different contexts and many of their
drawbacks have been overcome. For example, a strategy to
define a conserved quantity has been developed which not
only allows one to check the quality of the integration but
also allows for the correction of sampling errors due to the
use of a finite time step.14 Indeed the total energy of the
system minus the accumulated heat absorbed from the ther-a�Electronic mail: michele.ceriotti@phys.chem.ethz.ch.
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mostat will clearly be a conserved quantity for any thermo-
statting scheme. Moreover new stochastic methods have
been introduced which show very promising sampling
properties.15,16 In particular, a stochastic velocity rescaling
thermostat has been developed which couples to the total
kinetic energy of the system rather than the individual mo-
menta of the particles within it.15 This allows canonical sam-
pling to be achieved with a much smaller disturbance to the
Hamiltonian trajectory. In addition, it has been shown how a
generalized �colored noise� Langevin equation thermostat
can be tuned to sample a very wide range of frequencies
simultaneously and efficiently.16,17

The purpose of the present paper is to exploit these re-
cent developments by introducing two new stochastic path
integral thermostats that are competitive in terms of sam-
pling efficiency with the Nosé–Hoover chain thermostat but
simpler to implement and cheaper to use. To demonstrate
this, we have performed an extensive set of benchmark cal-
culations, computing the statistical sampling efficiencies of
various thermostats for a number of physical observables in
two very different condensed phase systems: a flexible model
of liquid water at room temperature and the diffusion of an
interstitial hydrogen atom in palladium.

The outline of the paper is as follows. Section II begins
by reviewing the theory of PIMD and discussing how the
equations of motion for the path integral replicas �or ring
polymer beads� can be integrated in the absence of a thermo-
stat. This sets the scene for the remainder of the section,
which introduces two new stochastic thermostats for path
integral simulations, compares them with the well-
established Nosé–Hoover chain thermostat, and ends with a
brief discussion about the difference between global and lo-
cal thermostatting. Section III presents the results of our cal-
culations on the liquid water and hydrogen-in-palladium sys-
tems and Sec. IV presents our conclusions.

II. THEORY

A. Path integral molecular dynamics

Consider a system of distinguishable particles described
by a Cartesian Hamiltonian of the form

H = �
i=1

N
pi

2

2mi
+ V�q1, . . . ,qN� , �1�

in which the potential energy V�q1 , . . . ,qN� is such that the
quantum mechanical partition function

Z = tr�e−�H� �2�

is well defined �with �=1 /kBT�. After a standard Trotter
product18,19 discretization of the trace, this partition function
can be written as

Z �
1

�2��� f� dfp� dfqe−�nHn�p,q�, �3�

where f =Nn and �n=� /n. Here Hn�p ,q� is the classical
Hamiltonian of a fictitious ring polymer consisting of n cop-
ies of the system connected by harmonic springs,2,3

Hn�p,q� = Hn
0�p,q� + Vn�q� , �4�

where

Hn
0�p,q� = �

i=1

N

�
j=1

n 	 �pi
�j��2

2mi
+

1

2
mi�n

2�qi
�j� − qi

�j−1��2
 , �5�

and

Vn�q� = �
j=1

n

V�q1
�j�, . . . ,qN

�j�� , �6�

with �n=1 /�n� and qi
�0��qi

�n�. The error in Eq. �3� is
O�1 /n2� and so vanishes in the limit as n→�.

The path integral molecular dynamics �PIMD� method6

uses this classical isomorphism as a computational tool to
calculate quantum mechanical equilibrium properties of the
form

�A =
1

Z
tr�e−�HA� . �7�

For example, the potential energy of the system is given by

�V �
1

�2��� fZ
� dfp� dfqe−�nHn�p,q�Vn�q� , �8�

where the estimator Vn�q� involves an average over the
beads of the ring polymer necklace,

Vn�q� =
1

n
Vn�q� =

1

n
�
j=1

n

V�q1
�j�, . . . ,qN

�j�� , �9�

and the kinetic energy can be calculated as

�T �
1

�2��� fZ
� dfp� dfqe−�nHn�p,q�Tn�q� , �10�

where Tn�q� is most efficiently chosen to be the centroid
virial estimator,20,21

Tn�q� =
N

2�
+

1

2n
�
i=1

N

�
j=1

n

�qi
�j� − q̄i� ·

�V�q1
�j�, . . . ,qN

�j��
�qi

�j� ,

�11�

with

q̄i =
1

n
�
j=1

n

qi
�j�. �12�

The errors in Eqs. �8� and �10� are again O�1 /n2� and may
therefore be neglected for sufficiently large n.

It is clear from these equations that the potential and
kinetic energies are obtained from estimators which do not
involve any reference to the ring polymer momenta, and in-
deed one can easily integrate out the momenta from Eqs. �8�
and �10� to leave purely configurational averages. The mo-
menta were originally introduced by Parrinello and
Rahman5,6 as a sampling tool to facilitate the exploration of
configuration space by molecular dynamics. As we have
written it, the free ring polymer Hamiltonian Hn

0�p ,q� in Eq.
�5� corresponds to one particular choice of the Parrinello–
Rahman mass matrix in which the physical particle mass is
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assigned to each ring polymer bead. This is the choice that is
used in the ring polymer molecular dynamics �RPMD� ap-
proximation to real time quantum correlation functions,22,23

although of course real-time properties are immediately lost
as soon as any thermostat is switched on, as we shall do in
this paper.

The PIMD method is based on the observation that,
since the classical ring polymer trajectory,

ṗt = −
�Hn�pt,qt�

�qt
and q̇t = +

�Hn�pt,qt�
�pt

, �13�

conserves both the Boltzmann factor e−�nHn�pt,qt�

=e−�nHn�p0,q0� and the phase space volume element dfptd
fqt

=dfp0dfq0, Eqs. �8� and �10� can be rewritten as

�A �
1

�2��� fZ
� dfp0� dfq0e−�nHn�p0,q0�An�rt� . �14�

This implies that static equilibrium properties such as the
potential and kinetic energies can be obtained by time-
averaging along ring polymer trajectories whose initial con-
ditions are sampled from the Boltzmann distribution

��p0,q0� =
1

�2��� fZ
e−�nHn�p0,q0�. �15�

Alternatively, and more efficiently, one can combine the
sampling with the time evolution by attaching a thermostat to
the ring polymer dynamics as we shall describe below. Be-
fore we do this, however, let us first explain how to integrate
the equations of motion in Eq. �13� in the absence of a ther-
mostat.

B. Ring polymer time evolution

A convenient way to integrate Eq. �13� is based on the
splitting of the Hamiltonian in Eq. �4� into a sum of a free
ring polymer part Hn

0�p ,q� and a potential energy part Vn�q�.
This suggests combining the exact evolutions generated by
these two parts of the Hamiltonian in a symplectic integra-
tion scheme in which the phase space density evolves under
the influence of the symmetric split operator propagator

e−�tL � e−��t/2�LVe−�tL0e−��t/2�LV, �16�

where L=L0+LV is the Liouvillian associated with Hn�p ,q�
and L0 and LV are those associated with Hn

0�p ,q� and Vn�q�.
The exact evolution generated by Hn

0�p ,q� is simplified
by transforming the ring polymer from the bead representa-
tion to the normal mode representation,

p̃i
�k� = �

j=1

n

pi
�j�Cjk and q̃i

�k� = �
j=1

n

qi
�j�Cjk, �17�

where in the case of even n the elements of the orthogonal
transformation matrix C are

Cjk = �
�1/n , k = 0

�2/n cos�2�jk/n� , 1 	 k 	 n/2 − 1

�1/n�− 1� j , k = n/2
�2/n sin�2�jk/n� , n/2 + 1 	 k 	 n − 1.

� �18�

In the normal mode representation, Hn
0�p ,q� becomes

Hn
0�p,q� = �

i=1

N

�
k=0

n−1 	 �p̃i
�k��2

2mi
+

1

2
mi�k

2�q̃i
�k��2
 , �19�

with

�k = 2�n sin�k�/n� . �20�

In view of this, the algorithm implied by Eq. �16� for inte-
grating the equations of motion in Eq. �13� through a time
interval �t is as follows:

pi
�j� ← pi

�j� −
�t

2

�V�q1
�j�, . . . ,qN

�j��
�qi

�j� , �21�

p̃i
�k� ← �

j=1

n

pi
�j�Cjk, q̃i

�k� ← �
j=1

n

qi
�j�Cjk, �22�

	p̃i
�k�

q̃i
�k� 
 ← 	 cos �k�t − mi�k sin �k�t

�1/mi�k�sin �k�t cos �k�t

	p̃i

�k�

q̃i
�k� 
 ,

�23�

pi
�j� ← �

k=0

n−1

Cjkp̃i
�k�, qi

�j� ← �
k=0

n−1

Cjkq̃i
�k�, �24�

pi
�j� ← pi

�j� −
�t

2

�V�q1
�j�, . . . ,qN

�j��
�qi

�j� . �25�

The first step in this algorithm is an exact evolution of
the ring polymer momenta through a time interval �t /2 un-
der the influence of the Hamiltonian Vn�q�. The second is a
transformation from the bead representation to the normal
mode representation. The third is an exact evolution of the
ring polymer coordinates and momenta through a time inter-
val �t under the influence of the free ring polymer Hamil-
tonian Hn

0�p ,q�. The fourth is a transformation from the nor-
mal mode representation back to the bead representation and
the fifth is a further evolution of the ring polymer momenta
through a time interval �t /2 under the influence of the
Hamiltonian Vn�q�.

Because the algorithm consists of a sequence of exact
evolutions under the influence of approximate Hamiltonians,
it is exactly symplectic,24,25 which implies that the ring poly-
mer phase space volume will be conserved for any time step
�t. However, the algorithm will not be very accurate �for
example, the ring polymer Hamiltonian will not be very well
conserved� unless �t is sufficiently small. When there is only
one ring polymer bead, the transformations in Eqs. �22� and
�24� become redundant, and Eqs. �21�, �23�, and �25� reduce
to the standard �second order� velocity Verlet method26 for
integrating a classical trajectory. It is clear from Eq. �16� that
the algorithm remains accurate to O��t2� for any number of

124104-3 Efficient stochastic thermostatting of PIMD J. Chem. Phys. 133, 124104 �2010�

Downloaded 28 Sep 2010 to 129.132.202.35. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



ring polymer beads. Note also that, in view of the nature of
the orthogonal transformation matrix C in Eq. �18�, the trans-
formations in Eqs. �22� and �24� can be done using fast Fou-
rier transform routines. These are so efficient that we have
not bothered to minimize the number of transformations be-
tween the bead and normal mode representations in the
implementation of the algorithm we have given above and
shall also not bother to do so in the implementation of the
thermostats described below.27

C. A path integral Langevin equation thermostat

Bussi and Parrinello have recently explained how a
simple �white noise� Langevin thermostat can be combined
with the velocity Verlet algorithm to give an efficient sam-
pling of the canonical distribution in classical statistical
mechanics.14,28 Since PIMD is simply classical molecular
dynamics in an extended phase space �albeit with a canonical
distribution at n times the physical temperature�, and since
the algorithm we have given in Eqs. �21�–�25� is a direct
generalization of the velocity Verlet algorithm, it is straight-
forward to adapt this Langevin thermostat to the present con-
text and use it to thermostat PIMD.

This can be done in two distinct ways, depending on
whether one chooses to thermostat the ring polymer beads or
the normal modes. Choosing the latter for reasons that will
become apparent below, one replaces Eq. �16� with

e−�tL � e−��t/2�L
e−��t/2�LVe−�tL0e−��t/2�LVe−��t/2�L
, �26�

where L
 is the part of the Liouvillian L=L0+LV+L
 in the
Fokker–Planck equation for the Langevin phase space den-
sity that introduces the friction and the thermal noise.14 Bussi
and Parrinello have shown that this is equivalent to adding
the following algorithmic steps both before and after Eqs.
�21�–�25�:14

p̃i
�k� ← �

j=1

n

pi
�j�Cjk, �27�

p̃i
�k� ← c1

�k�p̃i
�k� +�mi

�n
c2

�k��i
�k�, �28�

pi
�j� ← �

k=0

n−1

Cjkp̃i
�k�. �29�

Here �i
�k� is an independent Gaussian number �a normal de-

viate with zero mean and unit variance� that is different for
each physical degree of freedom, each ring polymer normal
mode, and each invocation of Eq. �28�, and the coefficients
c1

�k� and c2
�k� are14

c1
�k� = e−��t/2�
�k�

, �30�

c2
�k� = �1 − �c1

�k��2. �31�

All that remains to complete the specification of this
thermostat is to specify the normal mode friction coefficients

�k�. The advantage of working in the normal mode represen-
tation is that these friction coefficients can be chosen to give
an optimal sampling of the canonical distribution for the free

ring polymer, in a sense that we shall now explain.
In the normal mode representation, the Langevin dynam-

ics of each mode of the free ring polymer is that of an un-
coupled harmonic oscillator,

d

dt
q̃i

�k� =
p̃i

�k�

mi
,

d

dt
p̃i

�k� = − mi�k
2q̃i

�k� − 
�k�p̃i
�k� +�2mi


�k�

�n
�i

�k��t� , �32�

where �i
�k��t� represents an uncorrelated, Gaussian-distributed

random force with unit variance and zero mean ���i
�k�=0 and

��i
�k��0��i

�k��t�=��t��. In view of this, the optimum friction
coefficient 
�k� will be that which gives the smallest autocor-
relation time of the harmonic oscillator Hamiltonian and thus
the most rapid �Boltzmann-weighted� exploration of free ring
polymer energy shells. The relevant autocorrelation time

H =
1

�H2 − �H2�
0

�

��H�0� − �H��H�t� − �H�dt , �33�

where

H =
�p̃i

�k��2

2mi
+

1

2
mi�k

2�q̃i
�k��2 �34�

can be worked out analytically for the Langevin dynamics in
Eq. �32� and is29,30

H =
1


�k� +

�k�

4�k
2 . �35�

The optimum value of 
�k� for the excited �k�0� modes of
the ring polymer is therefore 
�k�=2�k. However, this pre-
scription cannot be used to thermostat the centroid mode, as
it gives 
�0�=2�0=0 �purely Hamiltonian dynamics without
a thermostat�. We shall therefore define a separate thermostat
time constant 0 for the centroid mode and specify the nor-
mal mode friction coefficients in Eq. �30� as follows:


�k� = �1/0, k = 0

2�k, k � 0.
� �36�

With this specification, the algorithm in Eqs. �27�–�29�
provides a very simple way to thermostat a PIMD simulation
that only requires a single input parameter �0� and that has
been tuned to sample the internal modes of the ring polymer
as efficiently as possible. The simplicity arises because the
tuning is based on the frequencies of the free ring polymer
internal modes, which are known analytically and are inde-
pendent of the interactions in the system �and therefore trans-
ferable from one system to another�. The price to be paid for
this is that the optimum friction coefficients for the free ring
polymer may not be quite the same as those for the interact-
ing ring polymer, although we would expect them to be very
similar for the highest frequency internal modes which are
well separated from the vibrations of the physical system.
Just how well this “path integral Langevin equation” �PILE�
thermostat works in practice will be investigated for two dif-
ferent systems in Sec. III.
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D. A generalized Langevin equation thermostat

Another recent development in thermostatting has been
the construction of colored noise Langevin thermostats for
variety of different problems, ranging from separately ther-
mostatting the electrons and the ions in Car–Parrinello mo-
lecular dynamics16 to efficiently generating configurations
consistent with the quantum mechanical canonical ensemble
without introducing any path integral beads.31 The key point
here is that the generalized Langevin equation �GLE� has
sufficient flexibility in its memory kernel and its colored
noise to be optimized for a variety of different applications.

In the present PIMD context, we would like to choose
the colored noise so as to efficiently thermostat a very wide
range of frequencies, including both the physical vibrations
of the system and the high frequency ring polymer internal
modes. That it is possible to construct such a GLE thermostat
is shown in Fig. 1, which compares the sampling efficiency
of a colored noise thermostat with that of a white noise ther-
mostat with a friction coefficient of 
=�0. The sampling
efficiency is defined17 as ����= ��V����−1, where V��� is
the autocorrelation time for the potential energy of a har-
monic oscillator with frequency �. This provides an indica-
tion of how efficiently the thermostat explores the thermally
accessible configuration space of a vibration with this fre-
quency. The white noise thermostat is optimally efficient
��=1� when �=�0, but its efficiency decreases linearly for
higher and lower values of � such that an efficiency of �
�0.2 is only obtained for a frequency range spanning two
orders of magnitude. By contrast, the colored noise thermo-
stat achieves ��0.2 for a frequency range spanning more
than four orders of magnitude. In a 32-bead path integral
simulation of liquid water at 300 K, this should be enough to
sample everything from the highest frequency internal mode
of the ring polymer at 2n /�hc�13 300 cm−1 down to the
diffusive modes of the liquid at frequencies as low as
1 cm−1.

The colored noise thermostat in Fig. 1 is one of a family
of thermostats that have recently been constructed17 by ex-

ploiting the equivalence29 between the non-Markovian dy-
namics of the GLE and Markovian dynamics in a higher
dimensional space. These thermostats have a simple matrix
form that is straightforward to implement on top of the ring
polymer evolution algorithm in Eqs. �21�–�25�. Choosing to
work in the bead representation rather than the normal mode
representation, since there is no advantage in this case in
making the transformation to normal modes, one simply re-
places Eqs. �27�–�29� with17

pi
�j� ← C1pi

�j� +�mi

�n
C2�i

�j�. �37�

Here �i
�j� is a vector of ns+1 independent Gaussian numbers,

pi
�j� = 	pi

�j�

si
�j� 
 �38�

is a vector containing the momentum of bead j and ns aux-
iliary momenta si

�j�, and

C1 = e−��t/2��T
�39�

and

C2
TC2 = I − C1

TC1 �40�

are the appropriate matrix generalizations of Eqs. �30� and
�31�.

Given a suitable friction matrix �, the implementation of
this algorithm is as follows. One begins by constructing C1

from Eq. �39� and C2 from Eq. �40�. C1 can be constructed
by combining a low-order Taylor series expansion of
e−��t/2P+1��T

with P matrix-squaring operations and C2 can be
constructed by Cholesky decomposition of I−C1

TC1. These
matrices are then stored for use in each iteration of Eq. �37�,
which requires two matrix-vector multiplications and the
generation of ns+1 normal deviates for each degree of free-
dom i and each ring polymer bead j.

In most large-scale applications, the effort required by
this algorithm will be negligible compared with the evalua-

ΩD

ΩDΩmin Ω0 Ωmax

WNLE
GLE

11 101 102 103 104 105
Ω �cm�1�

0.2

0.4

0.6
0.8
1

Κ V

10�4

10�3

10�2

10�1

11

D.
O.
S.
�ar
b.u
nit
s�

FIG. 1. The vibrational spectrum from a path integral molecular dynamics simulation of a flexible water model �blue�. In order to include the internal modes
of the ring polymer, the density of states has been computed from the velocity autocorrelation function of the individual ring polymer beads. This vibrational
spectrum is compared with the harmonic limit sampling efficiency �V of a white noise Langevin thermostat �dashed� and an optimal GLE thermostat �red�. The
latter has been optimized so as to give constant sampling efficiency over a frequency range spanning four orders of magnitude, centered geometrically on
�0=1 /20. The diffusion coefficient for the water model and that computed for the GLE dynamics in the free-particle limit are also shown in terms of the
“diffusion frequency” �D=kBT /mD.
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tion of the forces in Eqs. �21� and �25�. If it is not, one can
exploit the fact that the canonical distribution is invariant
under the action of Eq. �37� for any time step �t and only
apply the thermostat once in every m time steps with �t in
Eq. �39� replaced by m�t.17 With this modification, the algo-
rithm clearly provides a computationally very tractable way
to thermostat a PIMD simulation.

All that remains is to specify the friction matrix � in Eq.
�39�. In the calculations described below, we used ns=4 and

� = �0A , �41�

where the elements of the �5�5� matrix A are given in Table
I. These matrix elements were obtained in an automated
procedure17 designed to optimize the efficiency ���� of the
thermostat, which we have already compared with that of the
corresponding white noise Langevin thermostat �ns=0, 

=�0� in Fig. 1. In that comparison, �0 was chosen arbitrarily,
but in actual applications it is a physical input parameter that
can be used to tune the response of the thermostat to a par-
ticular frequency range, which one sees to be roughly
0.01�0	�	100�0 from the results in Fig. 1. One can of
course equally well replace this input parameter with a ther-
mostat time constant 0=1 /2�0, which we shall do in our
comparison of various thermostats in Sec. III.

For the sake of comparison, we will also perform some
calculations in Sec. III with a white noise Langevin equation
thermostat with friction 
=�0=1 /20. This white noise
Langevin scheme is closely related to an Andersen thermo-

stat in which the momenta are resampled with a probability

�t after each time step �t. The two methods have a similar
sampling efficiency in all the examples we have studied and
for this reason the results with the Andersen thermostat will
not be reported.

E. The Nosé–Hoover chain thermostat

As discussed in the Introduction, the gold standard
against which to compare the above stochastic PILE and
GLE thermostats is a deterministic Nosé–Hoover chain12 ap-
plied separately to each physical degree of freedom and each
ring polymer bead �or ring polymer normal mode�.13

One convenient way to do this that reduces to a
recommended32 operator splitting in the classical limit is to
replace Eq. �16� with

e−�tL � e−��t/2�LNHCe−��t/2�LVe−�tL0e−��t/2�LVe−��t/2�LNHC,

�42�

where LNHC is the part of the Liouvillian L=L0+LV+LNHC

for the extended system dynamics that involves the Nosé–
Hoover chain variables.32 Choosing to work in the normal
mode representation as in the case of the PILE thermostat,
the net effect of this operator splitting is that Eq. �28� is
replaced by the evolution of the following system of nonlin-
ear differential equations12 through a time interval of �t /2:

d

dt
p̃i

�k� = − p̃i
�k� �i,1

�k�

Q�k� , �43�

d

dt
�i,1

�k� = 	 �p̃i
�k��2

mi
−

1

�n

 − �i,1

�k� �i,2
�k�

Q�k� , �44�

d

dt
�i,l

�k� = 	 ��i,l−1
�k� �2

Q�k� −
1

�n

 − �i,l

�k��i,l+1
�k�

Q�k� , �45�

d

dt
�i,L

�k� = 	 ��i,L−1
�k� �2

Q�k� −
1

�n

 , �46�

d

dt
�i,l

�k� =
�i,l

�k�

Q�k� . �47�

Here �i,l
�k� and �i,l

�k� are the momentum and position variables
of the Nosé–Hoover chain attached to the kth normal mode
of the ring polymer in the ith degree of freedom, for l
=1, . . . ,L.

The system of differential equations in Eqs. �43�–�47�
has been discussed extensively in the literature on Nosé–
Hoover chains and numerous numerical methods have been
proposed for integrating it.13,32,33 The accuracy of the inte-
gration through each time interval �t /2 can be checked sepa-
rately for each i and k by monitoring the locally conserved
quantity,

TABLE I. Dimensionless elements Aij of the GLE friction matrix A in Eq.
�41�. This matrix was constructed using the options ns=4, range=104, and
“fit for potential energy,” using the freely available software on the website
http://gle4md.berlios.de/.

i j Aij

1 1 2.468 046 483 820�10+1

1 2 3.618 484 148 135�10−2

1 3 1.529 754 837 748�10+0

1 4 −4.832 976 901 522�10+0

1 5 3.075 592 122 514�10+1

2 1 −3.690 906 142 217�10−2

2 2 1.140 757 569 304�10−5

2 3 9.580 998 002 948�10−2

2 4 −2.633 785 831 010�10−2

2 5 5.628 596 350 432�10−2

3 1 −1.967 695 128 248�10+0

3 2 −9.580 998 002 948�10−2

3 3 1.803 797 247 061�10−1

3 4 6.834 981 703 810�10−1

3 5 −1.326 536 043 516�10+0

4 1 −1.376 606 646 573�10+0

4 2 2.633 785 831 010�10−2

4 3 −6.834 981 703 810�10−1

4 4 3.538 593 762 043�10+0

4 5 1.527 314 768 745�10+0

5 1 2.893 495 089 306�10+1

5 2 −5.628 596 350 432�10−2

5 3 1.326 536 043 516�10+0

5 4 −1.527 314 768 745�10+0

5 5 4.108 827 095 695�10+1
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Hi�
�k� =

�p̃i
�k��2

2mi
+ �

l=1

L 	 ��i,l
�k��2

2Q�k� +
�i,l

�k�

�n

 , �48�

and the accuracy of the overall symmetric split operator
propagator in Eq. �42� can be checked by monitoring the
globally conserved quantity

Hn� = Hn�p,q� + �
i=1

N

�
k=0

n−1

�
l=1

L 	 ��i,l
�k��2

2Q�k� +
�i,l

�k�

�n

 . �49�

In order to compare this thermostat with the stochastic
thermostats introduced above, we need to specify the normal
mode thermostat masses Q�k�. These play an analogous role
to the normal mode friction coefficients 
�k� in the PILE
thermostat introduced in Sec. II C. The Nosé–Hoover chain
masses that give the most efficient sampling of the canonical
distribution for the free ring polymer are12 Q�k�=1 /�n�k

2.
However, we cannot use this prescription to thermostat the
centroid mode, as �0=0. As in the case of the PILE thermo-
stat, we can get around this difficulty by defining a separate
thermostat time constant 0 for the centroid mode and replac-
ing �0 with 1 /20, so that the normal mode masses that
appear in Eqs. �43�–�47� are specified as follows:

Q�k� = � 40
2/�n, k = 0

1/�n�k
2, k � 0.

� �50�

This completes the specification of the NHC thermostat
that we shall use to compare with the stochastic PILE and
GLE thermostats in Sec. III. Several other groups have pro-
posed slightly different implementations of the NHC thermo-
stat for PIMD simulations, but we would not expect the dif-
ferences to have any major impact on our results. For
example, the original implementation by Tuckerman et al.13

involved transforming to “staging” variables rather than nor-
mal mode variables and employed a different operator split-
ting than the one we have used in Eq. �42�. Staging variables
are a valid alternative to normal mode variables and there are
a number of different ways in which one can do the operator
splitting, all of which should in principle converge on the
same result. We have used normal mode variables here to
make the connection with the free ring polymer evolution
algorithm in Eqs. �21�–�25� and chosen the operator splitting
in Eq. �42� to emphasize the connection with the PILE ther-
mostat in Eqs. �27�–�29�. A general feature of NHC thermo-
stats for path integrals is that they require the solution of a
large number of systems of nonlinear differential equations
of the form in Eqs. �43�–�47�. Since these differential equa-
tions must be solved numerically these thermostats are more
complicated than the stochastic thermostats we have de-
scribed above.

F. “Global” versus “local” thermostatting

All of the thermostats we have discussed so far are local,
in the sense that each degree of freedom and each ring poly-
mer bead �or normal mode� is separately thermostatted. This
is the simplest way to ensure that the kinetic and potential
energies of every single particle in the system are thermali-
zed as rapidly as possible, and it is therefore likely to be the

most efficient way to sample local properties such as the
energy of an interstitial hydrogen atom in palladium. On the
other hand, there are many properties that are sensitive to the
slow, collective motions of all of the atoms in the system,
such as the dielectric constant of liquid water. Local thermo-
stats will almost certainly be too aggressive to give an effi-
cient sampling of these collective properties because with
even a moderate amount of friction they tend to inhibit the
Hamiltonian diffusion. There has therefore been a renewed
interest recently in the development of “global” thermostats
that are attached to the system in a more gentle way and have
a less disruptive effect on the diffusion.

In particular, Bussi et al.15,34 have derived a global ver-
sion of the finite time step Langevin propagator in Eq. �28�
that acts as a thermostat on the kinetic energy of all N de-
grees of freedom rather than on each degree of freedom sepa-
rately. When implementing this global thermostat in a path
integral context, it is desirable to apply it only to the centroid
mode and to leave more aggressive local thermostats at-
tached to the less ergodic7 excited ring polymer internal
modes. In practice, this amounts to replacing just the cen-
troid �k=0� component of Eq. �28� with the following sto-
chastic velocity rescaling algorithm:15,34

p̃i
�0� ← �p̃i

�0�, �51�

where

�2 = c +
�1 − c����1

�0��2 + �i=2
N ��i

�0��2�
2�nK

+ 2�1
�0��c�1 − c�

2�nK
,

�52�

and

sign��� = sign��1
�0� +�2�nKc

�1 − c�
� , �53�

with

K = �
i=1

N �p̃i
�0��2

2mi
, �54�

and c=e−�t
�0�
. We shall call this global version of the PILE

thermostat PILE-G and the local version in which the cen-
troid is thermostatted using Eq. �28� PILE-L in the numerical
comparisons presented below.

The Nosé–Hoover chain thermostat can also be applied
globally and indeed this is how classical canonical ensemble
simulations are often carried out. Choosing again to keep the
thermostatting of the excited ring polymer modes local, the
modification amounts in this case to replacing the centroid
�k=0� components of Eqs. �43�–�47� with12

d

dt
p̃i

�0� = − p̃i
�0� �1

�0�

Q�0� , �55�

d

dt
�1

�0� = 	�
i=1

N �p̃i
�0��2

mi
−

N

�n

 − �1

�0� �2
�0�

Q�0� , �56�

d

dt
�l

�0� = 	 ��l−1
�0� �2

Q�0� −
1

�n

 − �l

�0��l+1
�0�

Q�0� , �57�
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d

dt
�L

�0� = 	 ��L−1
�0� �2

Q�0� −
1

�n

 , �58�

d

dt
�l

�0� =
�l

�0�

Q�0� , �59�

and to making the appropriate modifications to Eqs. �48� and
�49�; for example Eq. �48� is replaced by12

H��0� = �
i=1

N �p̃i
�0��2

2mi
+ �

l=1

L ��l
�0��2

2Q�0� +
N�1

�0�

�n
+ �

l=2

L
�l

�0�

�n
. �60�

Notice in particular that the N separate Nosé–Hoover chains
in the local thermostat have been replaced with a single
chain that is coupled to the total kinetic energy of the ring
polymer centroid via Eq. �56�. We shall call this global ver-
sion of the NHC thermostat NHC-G and the local version in
which the centroid is thermostatted using Eqs. �43�–�47�
NHC-L in the comparisons presented below.

One could clearly also imagine trying to develop a glo-
bal version of the GLE thermostat introduced in Sec. II D.
However, little benefit would be expected from this generali-
zation, because the capability of the GLE to adapt automati-
cally to the vibrational modes present in the system relies on
the fact that an independent thermostat is applied to each
degree of freedom. In any event, the two global thermostats
we have just described �PILE-G and NHC-G� are sufficient
for us to illustrate when it is preferable to use a global ther-
mostat rather than a local thermostat for path integral simu-
lations, as we shall do in the following section.

III. RESULTS AND DISCUSSION

It is well known that molecular dynamics can be used to
efficiently explore regions of phase space where the free en-
ergy surface contains local minima separated by barriers
comparable to the average thermal energy. Thermostats can
further enhance this sampling, particularly in the case of
PIMD where poorly ergodic, harmonic necklace modes are
present. In some cases inefficient sampling can also arise
when a statistically significant portion of phase space con-
sists of regions separated by high free energy barriers. In
these situations, which are not the concern of the present
work, the fact that PIMD is simply classical molecular dy-
namics in an extended phase space should in principle enable
one to adopt many of the accelerated dynamics techniques
that have been developed to speed up the rates of transitions
across barriers in classical simulations.

When this issue is not present a quantitative way to as-
sess the sampling efficiency is to consider the correlation
time of an observable A,

A =
1

�A2 − �A2�
0

�

��A�0� − �A��A�t� − �A�dt , �61�

in which the angular brackets denote an average of the ap-
propriate path integral estimator An�q� along a thermostatted
PIMD trajectory. This is related to the statistical uncertainty
�A in the expectation value of the observable �A by

�A �� A

tsim
, �62�

where tsim is the total simulation time. Therefore, one would
like to make A as small as possible so as to reduce the
uncertainty in �A for a simulation of a given length. In the
previous section we have used the correlation time of the
total energy for a harmonic oscillator as a tentative measure
of the efficiency of sampling for a Langevin equation �see
Eqs. �33� and �35��. Here we will instead perform PIMD
simulations of two typical condensed phase systems and
compute the correlation times of a number of different physi-
cal observables so as to compare the sampling efficiencies of
various thermostats in more realistic �anharmonic� situations.

A. Liquid water

Liquid water is ubiquitous in biological systems and im-
portant in many applications in chemistry and materials sci-
ence. Nuclear quantum effects have a significant influence on
its properties and it has therefore been a common target of
PIMD studies ever since the first path integral simulations of
the liquid were performed in the mid-1980s.35,36 It is also a
highly structured liquid in which changes in the local struc-
ture depend on complex collective rearrangements of the hy-
drogen bonding network, which are difficult to sample. Be-
cause of this, liquid water is a highly relevant test case for
our comparison.

Simulations were performed using the q-TIP4P/F flex-
ible, four-site water potential which has recently been param-
etrized to reproduce many of the static and dynamical prop-
erties of water in path integral simulations.37 For each
thermostat and value of the time constant 0, we ran a trajec-
tory for 12 ns at a temperature of 298 K and a density of
0.997 g cm−3. The simulation box contained 216 molecules,
with each atom described by a 32-bead ring polymer. The
equations of motion were integrated as described in Sec. II
and the ring polymer contraction scheme of Markland et
al.38,39 was used to accelerate the evaluation of the long-
range electrostatic interactions.

In order to assess the efficiencies of the different ther-
mostats, we first computed the correlation time T of the
centroid virial estimator of the kinetic energy. While for a
system of classical particles the kinetic energy is simply dis-
tributed according to the Boltzmann law, for quantum sys-
tems there is also a position-dependent contribution which
requires one to sample the forces experienced by the internal
modes of the ring polymer. This contribution is included in
the centroid virial estimator in Eq. �11�, which can be written
equivalently in the normal mode representation as

Tn�q� =
N

2�
−

1

2n
�
i=1

N

�
k=1

n−1

q̃i
�k� · F̃i

�k��q� , �63�

where F̃i
�k��q�=−�Vn�q� /�q̃i

�k� is the force on the kth excited
�k�0� normal mode of the ring polymer that arises from the
physical interaction potential.

Figure 2 compares the kinetic energy correlation times
T for a white noise Langevin equation �WNLE� themostat,
the GLE themostat, and global and local versions of the
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PILE and NHC thermostats as a function of the thermostat
time constant 0. The performance of the simple WNLE ther-
mostat, which yields efficient thermalization in the high fric-
tion limit but is very inefficient for large 0, shows that ef-
fective sampling of Tn�q� requires strong coupling to the
high frequency necklace modes. This is achieved automati-
cally in the PILE and NHC thermostats, which specifically
target the ring polymer normal modes, overcome the ergod-
icity problems observed in microcanonical PIMD and con-
sistently yield a low value of T. Note that this is true regard-
less of the method �global or local� that is used to thermostat
the centroid, which does not contribute to the kinetic energy
estimator in Eq. �63�. The quality of the GLE thermostat also
deteriorates more slowly than that of the WNLE thermostat
with increasing 0 and is constant as long as all of the ring
polymer necklace modes are included in the optimal range of
fitted frequencies �see Fig. 1�.

For comparison with T, we also report in Fig. 2 the
correlation time of the potential energy, V. This is much
more sensitive to the softer modes, and to the diffusive mo-
tion of the centroid in particular. Efficiently sampling the
potential energy is considerably �at least an order of magni-
tude� more difficult than sampling the kinetic energy, as can
be seen from the correlation times in the figure. This is be-
cause one must carefully balance the strong coupling needed
to ensure ergodicity of the polymers with the need to avoid
overdamping which causes the thermostat to become an ad-

ditional bottleneck to diffusion. The diffusion bottleneck is
quite apparent in Fig. 2 from the significant increase in V

which is observed for all of the local thermostats when 0 is
decreased below around 100 fs.

A reasonable efficiency in the sampling of the potential
energy can be achieved by carefully tuning the simple
WNLE thermostat, with the optimal coupling being 0

�500 fs. However, tuning the thermostat in this way for
every system one might wish to simulate is clearly undesir-
able and large increases in the potential energy autocorrela-
tion time result from a less than optimal choice of the WNLE
time constant. In contrast, the GLE, which also requires no a
priori knowledge of the internal frequencies of the ring poly-
mer, obtains a nearly constant sampling efficiency �V

�2 ps� over the four orders of magnitude of 0 we have
considered.

Turning now to the targeted schemes which exploit a
knowledge of the ring polymer normal mode frequencies,
one sees from Fig. 2 that the potential energy is sampled
most efficiently by PILE-G and NHC-G, which use a global
thermostat for the centroid. These schemes particularly excel
in the case of strong coupling �i.e., for a small relaxation
time 0�, implying that a rapid rescaling of the total �cen-
troid� kinetic energy helps to speed up the canonical sam-
pling of the potential energy. At the same time, since the
global thermostats are coupled to the total kinetic energy
rather than to individual momenta, the trajectory and the dy-
namical properties are only slightly disturbed,15 and hence
the ability of Hamiltonian dynamics to generate complex,
collective rearrangements can be fully exploited. This is
clear from the superiority of the global thermostats over the
local thermostats for this problem. An important final point
from Fig. 2 is that the simple stochastic PILE-G thermostat
provides equally rapid sampling of both the kinetic energy
and the potential energy of liquid water as the NHC-G ther-
mostat, without the need to evolve any extended variables.

The superiority of global thermostats over local thermo-
stats for liquid water is further supported by the results in
Fig. 3, where we show the correlation time of the squared
dipole moment of the supercell and the center-of-mass diffu-
sion coefficient obtained from the thermostatted trajectories.
The squared dipole moment is related to the dielectric con-
stant and is known to converge slowly as it requires the
reorientation of many individual water molecules, which in
turn requires a concerted rearrangement of the hydrogen
bonding network. In this case, microcanonical dynamics is
extremely effective, and the best sampling is obtained with
very weak coupling to the thermostats. For the local WNLE,
PILE-L, and NHC-L thermostats, there is a clear correspon-
dence in Fig. 3 between the reduction of the diffusion coef-
ficient due to overdamped dynamics and the degradation of
d2 as the thermostat time constant 0 is decreased. The glo-
bal PILE-G and NHC-G thermostats, and to a lesser extent
also the GLE thermostat, give much more effective sampling
of the squared dipole moment for small values of 0 and also
have a less disruptive effect on the diffusion. The properties
of the correlated noise we have used in the GLE are clearly
such that its effect on diffusion is much less severe than that
of the WNLE,17 despite its strong coupling to the high fre-
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FIG. 2. Correlation times for the centroid virial kinetic energy �left� and the
potential energy �right� obtained from path integral molecular dynamics
simulations of liquid water. The six panels show the dependence of these
quantities on the thermostat relaxation time 0 for the WNLE and GLE
thermostats and for local and global versions of the PILE and NHC
thermostats.
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quency necklace modes. As a consequence, its effects are
intermediate between those of local and global schemes.

Combining the results in Figs. 2 and 3, we see that the
PILE-G and NHC-G thermostats are the most efficient at
sampling the properties of liquid water that we have consid-
ered, with the GLE also doing rather well �and certainly
much better than the simple WNLE�. However, one cannot
conclude from this that it will always be better to use a
global rather than a local thermostatting scheme. Local
schemes enforce a canonical distribution on each of the in-
dividual components of the momentum, therefore ensuring a
homogeneous distribution of energy throughout the system.
Global schemes only monitor the overall temperature of the
system and rely on anharmonic coupling between different
regions and different frequency ranges to reach equipartition.
For these reasons, one should be particularly careful when
using global thermostats, as the inefficient sampling of par-
ticular internal degrees of freedom may be masked by the
very efficient equilibration of the total temperature. A few
local properties should therefore be also monitored to ensure
that equilibrium has been reached, and in general a local
thermostat is to be preferred whenever inhomogeneous or
quasiharmonic problems are treated, as we will demonstrate
in the next subsection.

B. Hydrogen in palladium

The second example system we shall consider is both
inhomogeneous and quasiharmonic: the motion of an atomic

hydrogen �H� interstitial in the lattice of palladium �Pd�. In
this more harmonic system, strong anticorrelations are
present in the underdamped limit. In some cases this can be
beneficial and methods have been devised which explicitly
enhance anticorrelations.40 However, our aim here is to esti-
mate how efficiently uncorrelated configurations are gener-
ated by the thermostatted dynamics. An analysis based on
correlation times of the form in Eq. �61� would therefore be
misleading, as anticorrelations can significantly reduce A

and mask the presence of very long relaxation times. For this
reason, the correlation times reported in this subsection are
computed as the integral of the absolute value of the normal-
ized autocorrelation function,

̃A =
1

�A2 − �A2�
0

�

���A�0� − �A��A�t� − �A��dt . �64�

The calculations used a supercell containing 256 Pd at-
oms and a single H atom. A ten bead ring polymer was used
for H while, in view of their large mass, the Pd atoms were
treated as classical particles. The Pd lattice parameter was
3.89 Å and the temperature was chosen to be 350 K, where
diffusion of the H atom is still relatively fast �D
=0.16 Å2 ps−1�. Interactions were modeled by an embedded
atom potential.41 We performed 8 ns of simulation with a
time step of 0.5 fs for each choice of thermostat and 0.

The thermostatting of the classical metal lattice and the
H ring polymer were performed separately. The same cou-
pling parameters and thermostatting method were used for
the metal and for the centroid of the H atom necklace. With
this setup global thermostats on the H atom centroid act on
only three degrees of freedom. Nevertheless, significant dif-
ferences are still observed with respect to fully local
schemes.

In Fig. 4 we plot the correlation times of the radius of
gyration of the ring polymer and of the H atom kinetic en-
ergy. The path integral estimators for both of these quantities
depend solely on the internal necklace modes, and the meth-
ods which target these modes specifically �PILE and NHC�
offer clear advantages. In particular, the radius of gyration of
the H atom ring polymer, which is almost completely decou-
pled from the slow motion of the ring polymer centroid, is
seen to be thermostatted equally well by PILE and NHC.
This clearly demonstrates that, by targeting the normal
modes with either thermostat �stochastic or deterministic�,
the ergodicity problem of PIMD is completely resolved. The
GLE is also seen to give rapid sampling of the H atom radius
of gyration and kinetic energy without exploiting any knowl-
edge of the normal mode vibrational frequencies, unless its
fitted range is shifted so that it does not encompass all of the
relevant spectrum �0�100 fs�.

Let us now consider two quantities which are more sen-
sitive to the physical forces on the H atom: its contribution to
the potential energy �defined as the energy of the H in Pd
system minus the energy of the Pd lattice at the same con-
figuration� and its diffusion coefficient. The correlation time
V of the H atom potential energy and the diffusion coeffi-
cient D obtained from the thermostatted PIMD simulations
are shown in Fig. 5, where the differences between this prob-
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FIG. 3. Correlation time for the squared dipole moment of the simulation
box �left� and the computed molecular center-of-mass diffusion coefficient
�right� obtained from path integral simulations of liquid water. The six pan-
els show the dependence of these quantities on the thermostat relaxation
time 0 for the WNLE and GLE thermostats and for local and global ver-
sions of the PILE and NHC thermostats.
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lem and liquid water become more apparent. Global schemes
are now very inefficient, as the frequency mismatch between
the H atom motion and the Pd lattice motion results in very
slow equilibration unless a separate thermostat is coupled to
each H atom centroid degree of freedom. This is clear from
the results of the PILE-G and NHC-G thermostats, which do
not perform any better for any value of the relaxation time 0

than the corresponding local thermostats perform in the limit
of weak coupling �0=104 fs�. We expect that this problem
would be exacerbated even further if several interstitial H
atoms were present and a global thermostat were to be at-
tached to the total kinetic energy of their centroids, as we did
in applying the global schemes to liquid water.

For the local schemes V responds sharply to changes in
the thermostat relaxation time 0. This occurs because the
range of H atom vibrational frequencies involved is rela-
tively narrow, and by choosing an appropriate friction it is
possible to obtain nearly optimal sampling even with a
simple WNLE. The GLE thermostat is almost independent of
the choice of 0, at the expense of a slight decrease in effi-
ciency with respect to the optimal white noise friction. This
behavior is consistent with the analytical estimates of the
efficiencies of the two thermostats in the harmonic limit �Fig.
1�, which show the GLE to have a lower maximum effi-
ciency in exchange for the far broader range of frequencies
for which it gives near optimal sampling.

In contrast with the water calculations we see that the
diffusion coefficient of the H interstitial in Pd is less affected
by overdamping, which manifests itself in Fig. 5 only when
a very small value of 0 is used. Unlike water, where diffu-
sion is sensitive to orientational modes which lie at higher
frequencies in the spectrum, the diffusion mechanism of H
atoms in Pd is a much simpler lattice mediated process. The
dynamics can therefore tolerate a higher level of disturbance
from the thermostat before being hampered.

Note finally from Fig. 5 that the deterministic NHC-L
thermostat does not suffer from such a dramatic degradation
in sampling efficiency for small 0 as its stochastic counter-
part PILE-L. Indeed, it has previously been observed17 that
for purely harmonic potentials the NHC dynamics yields
nearly optimal efficiency for all frequencies smaller than
�0=1 /��nQ�0�=1 /20. Since the NHC equations lack rota-
tional invariance, however, their performance depends criti-
cally on the relative orientations of the eigenvectors of the
Hessian with respect to the directions to which the thermo-
stat is applied.17 The optimal behavior is only obtained with
the correct alignment and the sampling efficiency degrades
significantly for other alignments in an anisotropic potential,
as we have observed here in the case of liquid water �com-
pare the NHC-L results for ̃V in Fig. 5 with those for V in
Fig. 2 in the limit of small 0�.
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FIG. 4. Integrals of the absolute values of the normalized autocorrelation
functions ̃ �Eq. �64�� for the ring polymer radius of gyration �left� and the
kinetic energy �right� of a hydrogen atom interstitial in a palladium lattice,
obtained from path integral molecular dynamics simulations. The six panels
show the dependence of these quantities on the thermostat relaxation time 0

for the WNLE and GLE thermostats and for local and global versions of the
PILE and NHC thermostats.
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IV. CONCLUDING REMARKS

Deterministic NHC thermostats have become the de
facto standard for the difficult problem of canonical sam-
pling in path integral molecular dynamics. Stochastic ther-
mostats are however considerably simpler and they provide a
physically very appealing way to model the interaction of a
system with a heat bath. Recent advances in the application
of stochastic methods to various molecular dynamics sam-
pling problems have therefore encouraged us to reconsider
these methods as an alternative to Nosé–Hoover chains for
path integral simulations, as we have done in this paper.

Overall, we believe that the results we have obtained are
very promising. For two distinctly different physical
systems—room temperature liquid water and a hydrogen
atom interstitial in a palladium lattice—the simple stochastic
PILE thermostat that we have introduced performs just as
well as the deterministic NHC thermostat for nearly every
property we have considered �see Figs. 2–5�. The only ex-
ception we have found is for the potential energy of a H atom
in a Pd lattice in the strong coupling limit �small 0�, where
the sampling efficiency of the NHC thermostat degrades
more gently �see the bottom left hand panel in Fig. 5�. In all
of the other cases we have considered there is essentially no
difference in terms of sampling efficiency between our sto-
chastic PILE and a deterministic NHC.

The GLE thermostat we have investigated has also been
found to perform very well, especially given that �unlike the
NHC and PILE thermostats� it does not exploit an analytic
knowledge of the free ring polymer normal modes. A particu-
larly nice feature of this thermostat is that it combines a
sufficiently strong coupling to the internal modes of the ring
polymer to ensure ergodic dynamics with a more gentle per-
turbation on the low frequency centroid motion that only
mildly inhibits the Hamiltonian diffusion. As a result of this
feature, the GLE behaves in many respects as a compromise
between a global and a local thermostat, and provided its
time constant 0 is chosen such that the range of fitted fre-
quencies encompasses the entire spectral range of interest it
gives close to optimal sampling in every situation.42

One final comment we should make when assessing the
relative merits of these various thermostats concerns their
computational cost. The implementation of the Langevin
equation is clearly very simple in both its white noise �sca-
lar� and colored noise �matrix� forms, because an exact
propagator can be obtained for the linear free-particle LE. In
contrast, a multiple time step scheme is mandatory when
solving the nonlinear Nosé–Hoover chain equations if one
wants to avoid a drift in the conserved quantity. In an ab
initio PIMD simulation, where the computational effort is
dominated by the evaluation of the physical forces acting on
each ring polymer bead, the extra effort that is required to
solve the Nosé–Hoover chain equations will often be negli-
gible. However, in the present simulations the evaluation of
the forces was made comparatively inexpensive by the use of
empirical force fields and a highly efficient ring polymer
contraction scheme.38,39 As a consequence, the different ther-
mostats were found to have quite a significant impact on the
computational cost of the calculations.43

In summary, we firmly believe that stochastic methods
should be reconsidered for use in path integral molecular
dynamics �and MD in general�, as their sampling efficiencies
are comparable to that of the most commonly used determin-
istic scheme and they have a number of practical advantages.
We are certainly now using Langevin equation thermostats in
our own PIMD simulations and we expect that the results we
have presented in this paper will encourage others to do so
also.
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