199 research outputs found

    Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina

    Get PDF
    7 páginas, 4 figuras, 3 tablasTelomeres usually shorten during an organism’s lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal–Wallis test (K=24.17, significant value: P-valueo0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann–Whitney test, V=299, P-valueo10− 6; and tube feet tissue Student's t= 2.28, P-value =0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.This research was financially supported by a PhD fellowship FPI-MICINN (BES-2011-044154) (ACG), the European ASSEMBLY project (227799), the Swedish Royal Academy of Sciences (ACG) and the Spanish Government project CTM2010-22218-C02. The research was also supported by a ‘Juan de la Cierva’ contract from the Spanish Government (RPP) and by the Adlerbertska Research Foundation (HNS).Peer reviewe

    Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera)

    Get PDF
    BACKGROUND: Sponges (Porifera) are nerve- and muscleless metazoa, but display coordinated motor reactions. Therefore, they represent a valuable phylum to investigate coordination systems, which evolved in a hypothetical Urmetazoon prior to the central nervous system (CNS) of later metazoa. We have chosen the contractile and locomotive species Tethya wilhelma (Demospongiae, Hadromerida) as a model system for our research, using quantitative analysis based on digital time lapse imaging. In order to evaluate candidate coordination pathways, we extracorporeally tested a number of chemical messengers, agonists and antagonists known from chemical signalling pathways in animals with CNS. RESULTS: Sponge body contraction of T. wilhelma was induced by caffeine, glycine, serotonine, nitric oxide (NO) and extracellular cyclic adenosine monophosphate (cAMP). The induction by glycine and cAMP followed patterns varying from other substances. Induction by cAMP was delayed, while glycine lead to a bi-phasic contraction response. The frequency of the endogenous contraction rhythm of T. wilhelma was significantly decreased by adrenaline and NO, with the same tendency for cAMP and acetylcholine. In contrast, caffeine and glycine increased the contraction frequency. The endogenous rhythm appeared irregular during application of caffeine, adrenaline, NO and cAMP. Caffeine, glycine and NO attenuated the contraction amplitude. All effects on the endogenous rhythm were neutralised by the washout of the substances from the experimental reactor system. CONCLUSION: Our study demonstrates that a number of chemical messengers, agonists and antagonists induce contraction and/or modulate the endogenous contraction rhythm and amplitude of our nerveless model metazoon T. wilhelma. We conclude that a relatively complex system of chemical messengers regulates the contraction behaviour through auto- and paracrine signalling, which is presented in a hypothetical model. We assume that adrenergic, adenosynergic and glycinergic pathways, as well as pathways based on NO and extracellular cAMP are candidates for the regulation and timing of the endogenous contraction rhythm within pacemaker cells, while GABA, glutamate and serotonine are candidates for the direct coordination of the contractile cells

    Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes

    Get PDF
    As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients

    Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial

    Get PDF
    Background: Local cancer relapse risk after breast conservation surgery followed by radiotherapy has fallen sharply in many countries, and is influenced by patient age and clinicopathological factors. We hypothesise that partial-breast radiotherapy restricted to the vicinity of the original tumour in women at lower than average risk of local relapse will improve the balance of beneficial versus adverse effects compared with whole-breast radiotherapy. Methods: IMPORT LOW is a multicentre, randomised, controlled, phase 3, non-inferiority trial done in 30 radiotherapy centres in the UK. Women aged 50 years or older who had undergone breast-conserving surgery for unifocal invasive ductal adenocarcinoma of grade 1-3, with a tumour size of 3 cm or less (pT1-2), none to three positive axillary nodes (pN0-1), and minimum microscopic margins of non-cancerous tissue of 2 mm or more, were recruited. Patients were randomly assigned (1:1:1) to receive 40 Gy whole-breast radiotherapy (control), 36 Gy whole-breast radiotherapy and 40 Gy to the partial breast (reduced-dose group), or 40 Gy to the partial breast only (partial-breast group) in 15 daily treatment fractions. Computer-generated random permuted blocks (mixed sizes of six and nine) were used to assign patients to groups, stratifying patients by radiotherapy treatment centre. Patients and clinicians were not masked to treatment allocation. Field-in-field intensity-modulated radiotherapy was delivered using standard tangential beams that were simply reduced in length for the partial-breast group. The primary endpoint was ipsilateral local relapse (80% power to exclude a 2·5% increase [non-inferiority margin] at 5 years for each experimental group; non-inferiority was shown if the upper limit of the two-sided 95% CI for the local relapse hazard ratio [HR] was less than 2·03), analysed by intention to treat. Safety analyses were done in all patients for whom data was available (ie, a modified intention-to-treat population). This study is registered in the ISRCTN registry, number ISRCTN12852634. Findings: Between May 3, 2007, and Oct 5, 2010, 2018 women were recruited. Two women withdrew consent for use of their data in the analysis. 674 patients were analysed in the whole-breast radiotherapy (control) group, 673 in the reduced-dose group, and 669 in the partial-breast group. Median follow-up was 72·2 months (IQR 61·7-83·2), and 5-year estimates of local relapse cumulative incidence were 1·1% (95% CI 0·5-2·3) of patients in the control group, 0·2% (0·02-1·2) in the reduced-dose group, and 0·5% (0·2-1·4) in the partial-breast group. Estimated 5-year absolute differences in local relapse compared with the control group were -0·73% (-0·99 to 0·22) for the reduced-dose and -0·38% (-0·84 to 0·90) for the partial-breast groups. Non-inferiority can be claimed for both reduced-dose and partial-breast radiotherapy, and was confirmed by the test against the critical HR being more than 2·03 (p=0·003 for the reduced-dose group and p=0·016 for the partial-breast group, compared with the whole-breast radiotherapy group). Photographic, patient, and clinical assessments recorded similar adverse effects after reduced-dose or partial-breast radiotherapy, including two patient domains achieving statistically significantly lower adverse effects (change in breast appearance [p=0·007 for partial-breast] and breast harder or firmer [p=0·002 for reduced-dose and p < 0·0001 for partial-breast]) compared with whole-breast radiotherapy. Interpretation: We showed non-inferiority of partial-breast and reduced-dose radiotherapy compared with the standard whole-breast radiotherapy in terms of local relapse in a cohort of patients with early breast cancer, and equivalent or fewer late normal-tissue adverse effects were seen. This simple radiotherapy technique is implementable in radiotherapy centres worldwide.We acknowledge support from Cancer Research UK (grant number C1491/A6035), the National Institute for Health Research (NIHR) Cancer Research Network (CRN), National Health Service Research Scotland, Health and Care Research Wales, and the National Institute of Health Research Royal Marsden/ Institute of Cancer Research Biomedical Research Centre. CEC is supported by the Cambridge National Institute of Health Research Biomedical Research Centre. IMPORT LOW is sponsored by The Institute of Cancer Research, London

    Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens

    Get PDF
    Methamphetamine (METH) addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC). Our study investigated the effects of a non-toxic METH injection (20 mg/kg) on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT), ATF2, and of the histone deacetylases (HDACs), HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf). In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck). Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac) and lysine 18 (H3K18ac) in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and HDACs might play in METH-induced gene expression needs to be investigated further
    corecore