226 research outputs found

    Measure of precursor electron density profiles of laser launched radiative shocks

    Get PDF
    We have studied the dynamics of strong radiative shocks generated with the high-energy subnanosecond iodine laser at Prague Asterix Laser System facilityComment: with small correction in Fig.1

    Temperature and kinematics of protoclusters with intermediate and high-mass stars: the case of IRAS 05345+3157

    Full text link
    We have mapped at small spatial scales the temperature and the velocity field in the protocluster associated with IRAS 05345+3157, which contains both intermediate-/high-mass protostellar candidates and starless condensations, and is thus an excellent location to investigate the role of massive protostars on protocluster evolution. We observed the ammonia (1,1) and (2,2) inversion transitions with the VLA. Ammonia is the best thermometer for dense and cold gas, and the observed transitions have critical densities able to trace the kinematics of the intracluster gaseous medium. The ammonia emission is extended and distributed in two filamentary structures. The starless condensations are colder than the star-forming cores, but the gas temperature across the whole protocluster is higher (by a factor of ~1.3-1.5) than that measured typically in both infrared dark clouds and low-mass protoclusters. The non-thermal contribution to the observed line broadening is at least a factor of 2 larger than the expected thermal broadening even in starless condensations, contrary to the close-to-thermal line widths measured in low-mass quiescent dense cores. The NH3-to-N2H+ abundance ratio is greatly enhanced (a factor of 10) in the pre--stellar core candidates, probably due to freeze-out of most molecular species heavier than He. The more massive and evolved objects likely play a dominant role in the physical properties and kinematics of the protocluster. The high level of turbulence and the fact that the measured core masses are larger than the expected thermal Jeans masses indicate that turbulence likely was an important factor in the initial fragmentation of the parental clump.Comment: 13 pages (with Appendix), 11 figure

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    Broad N2H+ emission towards the protostellar shock L1157-B1

    Full text link
    We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.Comment: ApJ, in pres

    Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity

    Get PDF
    The intermediate- to high-mass star-forming region IRAS 20343+4129 is an excellent laboratory to study the influence of high- and intermediate-mass young stellar objects on nearby starless dense cores, and investigate for possible implications in the clustered star formation process. We present 3 mm observations of continuum and rotational transitions of several molecular species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations carried out with the Very Large Array, to reveal the properties of the dense gas. We confirm undoubtedly previous claims of an expanding cavity created by an ultracompact HII region associated with a young B2 zero-age main sequence (ZAMS) star. The dense gas surrounding the cavity is distributed in a filament that seems squeezed in between the cavity and a collimated outflow associated with an intermediate-mass protostar. We have identified 5 millimeter continuum condensations in the filament. All of them show column densities consistent with potentially being the birthplace of intermediate- to high-mass objects. These cores appear different from those observed in low-mass clustered environments in sereval observational aspects (kinematics, temperature, chemical gradients), indicating a strong influence of the most massive and evolved members of the protocluster. We suggest a possible scenario in which the B2 ZAMS star driving the cavity has compressed the surrounding gas, perturbed its properties and induced the star formation in its immediate surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Mid-J CO Emission in Nearby Seyfert Galaxies

    Full text link
    We study for the first time the complete sub-millimeter spectra (450 GHz to 1550 GHz) of a sample of nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. The CO ladder (from Jup = 4 to 12) is the most prominent spectral feature in this range. These CO lines probe warm molecular gas that can be heated by ultraviolet photons, shocks, or X-rays originated in the active galactic nucleus or in young star-forming regions. In these proceedings we investigate the physical origin of the CO emission using the averaged CO spectral line energy distribution (SLED) of six Seyfert galaxies. We use a radiative transfer model assuming an isothermal homogeneous medium to estimate the molecular gas conditions. We also compare this CO SLED with the predictions of photon and X-ray dominated region (PDR and XDR) models.Comment: Proceedings of the Torus Workshop 2012 held at the University of Texas at San Antonio, 5-7 December 2012. C. Packham, R. Mason, and A. Alonso-Herrero (eds.); 6 pages, 3 figure

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    N2H+ depletion in the massive protostellar cluster AFGL 5142

    Get PDF
    We aim at investigating with high angular resolution the NH3/N2H+ ratio toward the high-mass star-forming region AFGL 5142 in order to study whether this ratio behaves similarly to the low-mass case, for which the ratio decreases from starless cores to cores associated with YSOs. CARMA was used to observe the 3.2 mm continuum and N2H+(1-0) emission. We used NH3(1,1) and (2,2), HCO+(1-0) and H13CO+(1-0) data from the literature and we performed a time-dependent chemical modeling of the region. The 3.2 mm continuum emission reveals a dust condensation of ~23 Msun associated with the massive YSOs, deeply embedded in the strongest NH3 core (hereafter central core). The N2H+ emission reveals two main cores, the western and eastern core, located to the west and to the east of the mm condensation, and surrounded by a more extended and complex structure of ~0.5 pc. Toward the central core the N2H+ emission drops significantly, indicating a clear chemical differentiation in the region. We found low values of the NH3/N2H+ ratio ~50-100 toward the western/eastern cores, and high values up to 1000 in the central core. The chemical model indicates that density, and in particular temperature, are key parameters in determining the NH3/N2H+ ratio. The high density and temperature reached in the central core allow molecules like CO to evaporate from grain mantles. The CO desorption causes a significant destruction of N2H+, favoring the formation of HCO+. This result is supported by our observations, which show that N2H+ and HCO+ are anticorrelated in the central core. The observed values of the NH3/N2H+ ratio in the central core can be reproduced by our model for times t~4.5-5.3x10^5 yr (central) and t~10^4-3x10^6 yr (western/eastern). The NH3/N2H+ ratio in AFGL 5142 does not follow the same trend as in regions of low-mass star formation mainly due to the high temperature reached in hot cores.Comment: Accepted for publication in A&A. 14 pages, 9 Figures, 5 Table
    corecore