We present the first detection of N2H+ towards a low-mass protostellar
outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar
cocoon. The detection was obtained with the IRAM 30-m antenna. We observed
emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the
emission coupled with the HIFI CHESS multiline CO observations leads to the
conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5
cm-3) gas associated with the large (20-25 arcsec) cavities opened by the
protostellar wind. We find a N2H+ column density of few 10^12 cm-2
corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched
by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than
the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that
the abundance of N2H+ is not increased by the passage of the shock. In summary,
N2H+ is a fossil record of the pre-shock gas, formed when the density of the
gas was around 10^4 cm-3, and then further compressed and accelerated by the
shock.Comment: ApJ, in pres