240 research outputs found
Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey
We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth
Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg^2 and span
distances ranging from 3-30 kpc from the Galactic Center. Object selection is
based on phased, photometric data with 28-50 epochs. We use this large sample
to explore the bulk properties of the stellar halo, including the spatial
distribution. The period-amplitude distribution of this sample shows that the
majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a
significant fraction (26 %) which have longer periods and appear to be
Oosterhoff type II. We find that the radial distributions of these two
populations have significantly different profiles (rho_{OoI} ~ R^(-2.26 +-
0.07) and rho_{OoII} ~ R^(-2.88 +- 0.11). This suggests that the stellar halo
was formed by at least two distinct accretion processes and supports dual-halo
models.Comment: 18 pages, 28 figures, apjemulated, minor corrections and
clarifications. Accepted to ApJ on Jan 21, 200
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1) deficiency is linked to aggressive breast cancer and predicts response to adjuvant therapy
Uracil in DNA is an important cause of mutagenesis. SMUG1 is a uracil DNA glycosylase that removes uracil through base excision repair. SMUG1 also processes radiation induced oxidative base damage as well as 5-fluorouracil incorporated into DNA during chemotherapy. We investigated SMUG1 mRNA expression in 249 primary breast cancers. SMUG1 protein expression was investigated in 1165 breast tumours randomised into two cohorts [training set (n=583) and test set (n=582)]. SMUG1 and chemotherapy response was also investigated in a series of 315 ER negative tumours (n=315). For mechanistic insights, SMUG1 was correlated to biomarkers of aggressive phenotype, DNA repair, cell cycle and apoptosis. Low SMUG1 mRNA expression was associated with adverse disease specific survival (p=0.008) and disease free survival (p=0.008). Low SMUG1 protein expression (25%) was associated with high histological grade (p<0.0001), high mitotic index (p<0.0001), pleomorphism (p<0.0001), glandular de-differentiation (p=0.0001), absence of hormonal receptors (ER-/PgR-/AR) (p<0.0001), presence of basal-like (p<0.0001) and triple negative phenotypes (p<0.0001). Low SMUG1 protein expression was associated with loss of BRCA1 (p<0.0001), ATM (p<0.0001) and XRCC1 (p<0.0001). Low p27 (p<0.0001), low p21 (p=0.023), mutant p53 (p=0.037), low MDM2 (p<0.0001), low MDM4 (p=0.004), low Bcl-2 (p=0.001), low Bax (p=0.003) and high MIB1 (p<0.0001) were likely in low SMUG1 tumours. Low SMUG1 protein expression was associated with poor prognosis in univariate (p<0.001) and multivariate analysis (p<0.01). In ER+ cohort that received adjuvant endocrine therapy, low SMUG1 protein expression remains associated with poor survival (p<0.01). In ER- cohort that received adjuvant chemotherapy, low SMUG1 protein expression is associated with improved survival (p=0.043). Our study suggests that low SMUG1 expression may correlate to adverse clinicopathological features and predict response to adjuvant therapy in breast cancer
Heating of near-Earth objects and meteoroids due to close approaches to the Sun
It is known that near-Earth objects (NEOs) during their orbital evolution may
often undergo close approaches to the Sun. Indeed it is estimated that up to
~70% of them end their orbital evolution colliding with the Sun. Starting from
the present orbital properties, it is possible to compute the most likely past
evolution for every NEO, and to trace its distance from the Sun. We find that a
large fraction of the population may have experienced in the past frequent
close approaches, and thus, as a consequence, a considerable Sun-driven
heating, not trivially correlated to the present orbits. The detailed dynamical
behaviour, the rotational and the thermal properties of NEOs determine the
exact amount of the resulting heating due to the Sun. In the present paper we
discuss the general features of the process, providing estimates of the surface
temperature reached by NEOs during their evolution. Moreover, we investigate
the effects of this process on meteor-size bodies, analyzing possible
differences with the NEO population. We also discuss some possible effects of
the heating which can be observed through remote sensing by ground-based
surveys or space missions.Comment: 8 pages, 5 figures, accepted by MNRA
Determination of the Nature of the Tetragonal to Orthorhombic Phase Transition in SrFe_2As_2 by Measurement of the Local Order Parameter
SrFe2As2 is the end-member for a series of iron-pnictide superconductors and
has a tetragonal-to-orthorhombic phase transition near 200 K. Previous
macroscopic measurements to determine the nature of the transition gave
seemingly inconsistent results so we use electron microscopy to monitor the
local order parameter showing that the transformation is first order and that
the orthorhombic phase grows as needle domains. This suggests the transition
occurs via the passage of transformation dislocations, explaining the apparent
inconsistencies. This mechanism may be common to similar transitions.Comment: 4 pages, 4 figures submitted to Physical Review Letters.
Supplementary information can be found at
http://cook.msm.cam.ac.uk/~supp_info/ An extra sentence in the second last
paragraph and reference 16 has been adde
Spin density wave induced disordering of the vortex lattice in superconducting LaSrCuO
We use small angle neutron scattering to study the superconducting vortex
lattice in LaSrCuO as a function of doping and magnetic field.
We show that near optimally doping the vortex lattice coordination and the
superconducting coherence length are controlled by a van-Hove singularity
crossing the Fermi level near the Brillouin zone boundary. The vortex lattice
properties change dramatically as a spin-density-wave instability is approached
upon underdoping. The Bragg glass paradigm provides a good description of this
regime and suggests that SDW order acts as a novel source of disorder on the
vortex lattice.Comment: Accepted in Phys. Rev.
(1173) Anchises - Thermophysical and Dynamical Studies of a Dynamically Unstable Jovian Trojan
We have performed detailed thermophysical and dynamical modelling of Jovian
Trojan (1173) Anchises. Our results reveal a most unusual object. By examining
observational data taken by IRAS, Akari and WISE between 11.5 and 60 microns,
along with variations in its optical lightcurve, we find Anchises is most
likely an elongated body, with an axes-ratio of ~1.4. This yields calculated
best-fit dimensions of 170x121x121km (an equivalent diameter of 136+18/-11km).
We find the observations are best fit by Anchises having a retrograde sense of
rotation, and an unusually high thermal inertia (25 to 100 Jm-2s-0.5K-1). The
geometric albedo is found to be 0.027 (+0.006/-0.007). Anchises therefore has
one of the highest published thermal inertias of any object larger than 100km
in diameter, at such large heliocentric distances, and is one of the lowest
albedo objects ever observed. More observations are needed to see if there is a
link between the very shallow phase curve, with almost no opposition effect,
and the derived thermal properties for this large Trojan asteroid. Our
dynamical investigation of Anchises' orbit has revealed it to be dynamically
unstable on timescales of hundreds of Myr, similar to the unstable Neptunian
Trojans 2001 QR322 and 2008 LC18. Unlike those objects, we find that Anchises'
dynamical stability is not a function of its initial orbital elements, the
result of the exceptional precision with which its orbit is known. This is the
first time that a Jovian Trojan has been shown to be dynamically unstable, and
adds weight to the idea that planetary Trojans represent a significant ongoing
contribution to the Centaur population, the parents of the short-period comets.
The observed instability does not rule out a primordial origin for Anchises,
but when taken in concert with the result of our thermophysical analysis,
suggest that it would be a fascinating target for future study.Comment: 5 figures, 3 tables, accepted for publication in Monthly Notices of
the Royal Astronomical Societ
The diameter of 88 Thisbe from its occultation of SAO 187124
The 7 October, 1981 occultation of SAO 187124 by 88 Thisbe was observed at twelve sites. The occultation observations, together with information about the asteroid's light curve, gives a mean diameter for Thisbe of 232 + or - 10 km. This value is 10 percent larger than the previously published radiometric diameter of Thisbe
WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results
We present the preliminary analysis of over 1739 known and 349 candidate
Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared
Survey Explorer (WISE). With this survey the available diameters, albedos and
beaming parameters for the Jovian Trojans have been increased by more than an
order of magnitude compared to previous surveys. We find that the Jovian Trojan
population is very homogenous for sizes larger than km (close to the
detection limit of WISE for these objects). The observed sample consists almost
exclusively of low albedo objects, having a mean albedo value of .
The beaming parameter was also derived for a large fraction of the observed
sample, and it is also very homogenous with an observed mean value of
. Preliminary debiasing of the survey shows our observed sample is
consistent with the leading cloud containing more objects than the trailing
cloud. We estimate the fraction to be N(leading)/N(trailing) , lower than the value derived by others.Comment: Accepted for publication in Astrophysical Journal. Electronic table
will be available at the publishers websit
Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope
The asteroid (21) Lutetia is the target of a planned close encounter by the
Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been
extensively observed by a variety of astronomical facilities. We used the
Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide
wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety
of HST filters and a ground-based visible light spectrum, we employed synthetic
photometry techniques to derive absolute fluxes for Lutetia. New results from
ground-based measurements of Lutetia's size and shape were used to convert the
absolute fluxes into albedos. We present our best model for the spectral energy
distribution of Lutetia over the wavelength range 120-800 nm. There appears to
be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than
~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is
considerably larger than that of typical C-chondrite material (~4%). The
geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not
consistent with a metal-dominated surface at infrared or radar wavelengths, and
its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed
for typical primitive, chondritic material. We derive a relatively high FUV
albedo of ~10%, a result that will be tested by observations with the Alice
spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure
- …