We have performed detailed thermophysical and dynamical modelling of Jovian
Trojan (1173) Anchises. Our results reveal a most unusual object. By examining
observational data taken by IRAS, Akari and WISE between 11.5 and 60 microns,
along with variations in its optical lightcurve, we find Anchises is most
likely an elongated body, with an axes-ratio of ~1.4. This yields calculated
best-fit dimensions of 170x121x121km (an equivalent diameter of 136+18/-11km).
We find the observations are best fit by Anchises having a retrograde sense of
rotation, and an unusually high thermal inertia (25 to 100 Jm-2s-0.5K-1). The
geometric albedo is found to be 0.027 (+0.006/-0.007). Anchises therefore has
one of the highest published thermal inertias of any object larger than 100km
in diameter, at such large heliocentric distances, and is one of the lowest
albedo objects ever observed. More observations are needed to see if there is a
link between the very shallow phase curve, with almost no opposition effect,
and the derived thermal properties for this large Trojan asteroid. Our
dynamical investigation of Anchises' orbit has revealed it to be dynamically
unstable on timescales of hundreds of Myr, similar to the unstable Neptunian
Trojans 2001 QR322 and 2008 LC18. Unlike those objects, we find that Anchises'
dynamical stability is not a function of its initial orbital elements, the
result of the exceptional precision with which its orbit is known. This is the
first time that a Jovian Trojan has been shown to be dynamically unstable, and
adds weight to the idea that planetary Trojans represent a significant ongoing
contribution to the Centaur population, the parents of the short-period comets.
The observed instability does not rule out a primordial origin for Anchises,
but when taken in concert with the result of our thermophysical analysis,
suggest that it would be a fascinating target for future study.Comment: 5 figures, 3 tables, accepted for publication in Monthly Notices of
the Royal Astronomical Societ