276 research outputs found

    Spectropolarimetry of the Type Ia SN 2007sr Two Months After Maximum Light

    Get PDF
    We present late time spectropolarimetric observations of SN 2007sr, obtained with the VLT telescope at ESO Paranal Observatory when the object was 63 days after maximum light. The late time spectrum displays strong line polarization in the CaII absorption features. SN 2007sr adds to the case of some normal Type Ia SNe that show high line polarization or repolarization at late times, a fact that might be connected with the presence of high velocity features at early times

    Jet-Induced Explosions of Core Collapse Supernovae

    Get PDF
    We numerically studied the explosion of a supernova caused by supersonic jets present in its center. The jets are assumed to be generated by a magneto-rotational mechanism when a stellar core collapses into a neutron star. We simulated the process of the jet propagation through the star, jet breakthrough, and the ejection of the supernova envelope by the lateral shocks generated during jet propagation. The end result of the interaction is a highly nonspherical supernova explosion with two high-velocity jets of material moving in polar directions, and a slower moving, oblate, highly distorted ejecta containing most of the supernova material. The jet-induced explosion is entirely due to the action of the jets on the surrounding star and does not depend on neutrino transport or re-acceleration of a stalled shock. The jet mechanism can explain the observed high polarization of Type Ib,c and Type II supernovae, pulsar kicks, very high velocity material observed in supernova remnants, indications that radioactive material was carried to the hydrogen-rich layers in SN1987A, and some others observations that are very difficult or impossible to explain by the neutrino energy deposition mechanism. The breakout of the jet from a compact, hydrogen- deficient core may account for the gamma-ray bursts and radio outburst associated with SN1998bw/GRB980425.Comment: 14 pages, LaTeX, aaspp4.sty, epsf.sty, submitted to ApJ Let

    Early-time Spitzer observations of the type II-Plateau supernova, 2004dj

    Full text link
    We present mid-infrared observations with the Spitzer Space Telescope of the nearby type II-P supernova, SN 2004dj, at epochs of 89 to 129 days. We have obtained the first mid-IR spectra of any supernova apart from SN 1987A. A prominent [NiII] 6.64 micron line is observed, from which we deduce that the mass of stable nickel must be at least 2.2e10(-4) Msun. We also observe the red wing of the CO-fundamental band. We relate our findings to possible progenitors and favour an evolved star, most likely a red supergiant, with a probable initial mass between ~10 and 15 Msun.Comment: ApJ Letters (accepted

    Maximum Brightness and Post-Maximum Decline of Light Curves of SN~Ia: A Comparison of Theory and Observations

    Get PDF
    We compare the observed correlations between the maximum brightness, postmaximum decline rate and color at maximum light of Type Ia supernovae (SN Ia) with model predictions. The observations are based on a total of 40 SN Ia with 29 SN of the Calan Tololo Supernova Search and 11 local SN which cover a range of 2 mag in the absolute visual brightness. The observed correlations are not tight, one dimensional relations. Supernovae with the same postmaximum decline or the same color have a spread in visual magnitude of about 0.7 mag. The dispersion in the color-magnitude relation may result from uncertainties in the distance determinations or the interstellar reddening within the host galaxy. The dispersion in the decline rate-magnitude relation suggests that an intrinsic spread in the supernova properties exists that cannot be accounted for by any single relation between visual brightness and postmaximum decline. Theoretical correlations are derived from a grid of models which encompasses delayed detonations, pulsating delayed detonations, the merging scenario and helium detonations. We find that the observed correlations can be understood in terms of explosions of Chandrasekhar mass white dwarfs. Our models show an intrinsic spread in the relations of about 0.5 mag in the maximum brightness and about 0.1 mag in the B-V color. Our study provides strong evidence against the mechanism of helium detonation for subluminous, red SN Ia.Comment: 7 pages, 3 figures, macros ''aaspp.sty'. LaTeX Style. Astrophysical Journal Letters, submitted Jul. 1995, revised Aug. 1995, resubmitted Sep. 199

    Properties of the ultraviolet flux of type Ia supernovae: an analysis with synthetic spectra of SN 2001ep and SN 2001eh

    Full text link
    The spectral properties of type Ia supernovae in the ultraviolet (UV) are investigated using the early-time spectra of SN 2001ep and SN 2001eh obtained using the Hubble Space Telescope (HST). A series of spectral models is computed with a Monte Carlo spectral synthesis code, and the dependence of the UV flux on the elemental abundances and the density gradient in the outer layers of the ejecta is tested. A large fraction of the UV flux is formed by reverse fluorescence scattering of photons from red to blue wavelengths. This process, combined with ionization shifts due to enhanced line blocking, can lead to a stronger UV flux as the iron-group abundance in the outer layers is increased, contrary to previous claims.Comment: 14 pages, 13 figures. Replaced with revised version accepted for publication in MNRA

    Theoretical Light Curves of Type II-P SNe and Applications to Cosmology

    Full text link
    Based on an extensive grid of stellar models between 13 and 25 Mo and a wide range of metallicities, we have studied the light curves of core collapse supernovae, their application to cosmology and evolutionary effects with redshift. The direct link between the hydro and radiation transport allows to calculate monochromatic light curves. With decreasing metallicity Z and increasing mass, progenitors tend to explode as compact Blue Supergiants and produce sub-luminous supernovae that are about 1.5 mag dimmer compared to "normal" SNe II with Red Supergiant progenitors (RSGs). Progenitors with small masses tend to explode as RSGs even at low Z. The consequences are obvious for probing the chemical evolution, namely, a strong bias when using the statistics of core collapse supernovae to probe the history of star formation. Our study is limited in scope with respect to the explosion energies and the production of radioactive Ni. Within the class of "extreme SNe II-P" supernovae, the light curves are rather insensitive with respect to the progenitor mass and explosion energy compared to analytic models which are based on parameterized stellar structures. We expect a wider range of brightness due to variations in Ni56 because radioactive energy is a main source of luminosity. However, the overall insensitivity of LCs may allow their use as quasi-standard candles for distance determination.Comment: 14 pages, 16 figures, accepted for publication in MNRA
    • …
    corecore