111 research outputs found

    Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles

    Get PDF
    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e. g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols

    Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology

    No full text
    International audienceFor the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example

    Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Get PDF
    This paper discusses the influence of primary biological aerosols (PBA) on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere

    Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    Get PDF
    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example

    A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

    Get PDF
    It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes

    ama1 Genes of Sympatric Plasmodium vivax and P. falciparum from Venezuela Differ Significantly in Genetic Diversity and Recombination Frequency

    Get PDF
    BACKGROUND: We present the first population genetic analysis of homologous loci from two sympatric human malaria parasite populations sharing the same human hosts, using full-length sequences of ama1 genes from Plasmodium vivax and P. falciparum collected in the Venezuelan Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Significant differences between the two species were found in genetic diversity at the ama1 locus, with 18 distinct haplotypes identified among the 73 Pvama1 sequences obtained, compared to 6 unique haplotypes from 30 Pfama1 sequences, giving overall diversity estimates of h = 0.9091, and h = 0.538 respectively. Levels of recombination were also found to differ between the species, with P. falciparum exhibiting very little recombination across the 1.77 kb sequence. In contrast, analysis of patterns of nucleotide substitutions provided evidence that polymorphisms in the ama1 gene of both species are maintained by balancing selection, particularly in domain I. The two distinct population structures observed are unlikely to result from different selective forces acting upon the two species, which share both human and mosquito hosts in this setting. Rather, the highly structured P. falciparum population appears to be the result of a population bottleneck, while the much less structured P. vivax population is likely to be derived from an ancient pool of diversity, as reflected in a larger estimate of effective population size for this species. Greatly reduced mosquito transmission in 1997, due to low rainfall prior to the second survey, was associated with far fewer P. falciparum infections, but an increase in P. vivax infections, probably due to hypnozoite activation. CONCLUSIONS/SIGNIFICANCE: The relevance of these findings to putative competitive interactions between these two important human pathogen species is discussed. These results highlight the need for future control interventions to employ strategies targeting each of the parasite species present in endemic areas

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems

    Implementasi Emerging Patern Untuk Data Covid 19 Pada DKI Jakarta

    Full text link
    Tujuan penelitian mengimplementasikan informasi pola penambangan data covid 19 pada wilayah DKI Jakarta. Permasalahan yang dihadapi sulitnya mengidentifikasikan pola data covid 19 dalam satu wilayah, susah menggali data pada web http://corona.Jakarta.go.id, selanjutnya tidak mudah memutuskan penanganan covid 19. Metode penelitian ini menggunakan CRISP-DM dengan pemodelan emerging patern supervise serta EPM algorithm, kontribusi penelitian adalah membantu Pemerintah dalam mengatasi permasalahan penyebaran cluster covid 19 di beberapa wilayah di Indonesia. Keluaran hasil penelitian menghasilkan cluster informasi covid 19 dilingkungan DKI Jakart
    corecore