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Abstract. For the past 200 years, the field of aerobiology has
explored the abundance, diversity, survival and transport of
micro-organisms in the atmosphere. Micro-organisms have
been explored as passive and severely stressed riders of at-
mospheric transport systems. Recently, an interest in the ac-
tive roles of these micro-organisms has emerged along with
proposals that the atmosphere is a global biome for micro-
bial metabolic activity and perhaps even multiplication. As
part of a series of papers on the sources, distribution and
roles in atmospheric processes of biological particles in the
atmosphere, here we describe the pertinence of questions re-
lating to the potential roles that air-borne micro-organisms
might play in meteorological phenomena. For the upcom-
ing era of research on the role of air-borne micro-organisms
in meteorological phenomena, one important challenge is to
go beyond descriptions of abundance of micro-organisms in
the atmosphere toward an understanding of their dynamics in
terms of both biological and physico-chemical properties and
of the relevant transport processes at different scales. An-
other challenge is to develop this understanding under con-
texts pertinent to their potential role in processes related to
atmospheric chemistry, the formation of clouds, precipitation
and radiative forcing. This will require truly interdisciplinary
approaches involving collaborators from the biological and
physical sciences, from disciplines as disparate as agronomy,
microbial genetics and atmosphere physics, for example.

Correspondence to:C. E. Morris
(cindy.morris@avignon.inra.fr)

1 Introduction

The presence of micro-organisms in the atmosphere was re-
vealed by the clever experiments of Spallanzani in the mid-
dle of the 18th century (Capanna, 1999) and of Pasteur at
the end of the 19th century (Pasteur, 1890). Yet, the atmo-
sphere still presents a frontier for pioneering microbiologists.
Aside from classical pursuits of aerobiology (descriptions of
the abundance and diversity of micro-organisms in the atmo-
sphere, of their response to the physical-chemical conditions
of the atmosphere and of their dissemination), questions rel-
ative to the atmosphere as a habitat for micro-organisms have
been little explored. Furthermore, for decades, microbiolo-
gists and atmosphere physicists and chemists have suspected
that air-borne micro-organisms play roles in atmospheric
processes. But these roles have not yet been clearly eluci-
dated. This paper will present an overview of atmospheric
microbiology, the possibility of an “atmosphere biome” as
a distinct global ecosystem and the pertinence of a range of
new questions about the role of micro-organisms in atmo-
spheric processes. It will also set the stage for several other
related review and perspectives papers in the special issue of
this journal onProperties of Biological Aerosols and their
Impact on Atmospheric Processes(2007) that will present
specific conceptual and technical challenges in detail.

This paper covers the potential role of micro-organisms
per se. These include bacteria and fungi (hyphae and spores)
for which there are techniques that readily facilitate their
detection and study, but also include viruses, algae and di-
verse unicellular organisms. Micro-organisms have features
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in common with other types of biological particles (i.e., the
ensemble of parts of plant, insect and other animal tissues
that can be found in the atmosphere) such as the proteins,
carbohydrates and lipids on their surfaces. The interaction of
biological particles with atmospheric processes involves di-
rect interactions with particle surfaces, in addition to the pro-
cesses mediated by active metabolism. Furthermore, studies
on atmospheric biological particles do not necessarily differ-
entiate among the specific components of the aerosol. Hence,
to consider the potential roles of micro-organisms in atmo-
spheric processes, we have also found inspiration in the lit-
erature about biological particles at large. In this paper we
will refer to “micro-organisms” with regard to generic pro-
cesses pertinent to all of the component members, otherwise
we will name the specific type or species of micro-organism
when this detailed information was available in the literature.

With the growing awareness of climate changes on our
planet, interest in atmospheric processes that define climate
has heightened and diversified thereby bringing new atten-
tion to the possible roles of micro-organisms in these pro-
cesses. In 2006, the European Science Foundation funded
an exploratory workshop on “Microbiological Meteorology”
convened at the French National Agronomic Research In-
stitute (INRA) in Avignon (Morris and Sands, 2006). The
objective of the workshop was to bring together the neces-
sary competence to examine the interplay between vegeta-
tion, bio-aerosols, atmospheric processes and air quality. The
twenty attendees represented the disparate fields of agron-
omy, atmosphere physics and chemistry, bioclimatology, en-
vironmental modeling, meteorology, microbiology and plant
pathology. We worked to create an initial momentum for
new interdisciplinary research programs around questions of
the impact of micro-organisms on atmospheric processes. As
part of this momentum, we have requested the dedication of
this special issue ofBiogeosciencesto “Properties of biologi-
cal aerosols and their impact on atmospheric processes”, and
are presenting herein our collective ideas on research needs
to enhance the emergence of interdisciplinary collaboration
on exciting and novel questions.

What are some of the potential roles for micro-organisms
in atmospheric processes and what interdisciplinary research
might be required to elucidate their roles? If considered as
inert particles, microbial cells as well as other types of bi-
ological particles can have properties that allow them to act
as cloud condensation nuclei (Ariya and Amyot, 2004) and
to participate in radiative forcing (Jaenicke, 2005). Some
also produce highly active ice nuclei that may be involved
in processes that lead to precipitation (Ariya and Amyot,
2004; Morris et al., 2004; Szyrmer and Zawadzki, 1997).
This question is treated in detail in another paper of this
special issue (M̈ohler et al., 2007). In addition, many air-
borne micro-organisms likely metabolize chemical compo-
nents of aerosols thereby modifying atmosphere chemistry
(Ariya et al., 2002; Ariya and Amyot, 2004). Moreover, non-
metabolic pathways for chemical modification due to the ex-

istence of biological particles are also theoretically feasible.
For instance, desorption of molecules from biological sur-
faces (Cote et al., 2008), chemical release due to cell lysis,
and collision-coalescence processes all can modify the chem-
ical composition of atmospheric gas-phase and particulate
matters. It should be noted that chemical reactions dictate the
lifetime of atmospheric particles, their ability to act as cloud
condensation nuclei and/or ice nuclei, as well as the produc-
tion of atmospheric oxidants. This is because physical chem-
istry governs the total mass of airborne particles, their acidity,
the amount of light they scatter and absorb, their reactivity,
and their ability to act as cloud condensation and ice nuclei.
The impact of physical chemistry on the total mass of parti-
cles that are airborne compounds the effect of source strength
(i.e., the overall potential of different sources to contribute
particles to the atmosphere). It can be argued that many of
these effects could be studied simply from the perspective of
the physical sciences via classical approaches used for other
types of aerosols. However, micro-organisms are metabol-
ically active with dynamic biological properties, and many
microbial cells maintain viability in the atmosphere. Hence,
the microbial traits that lead to the potential effects on the
atmosphere listed above are due to properties of cells that
vary with changes in metabolism, in gene expression, in the
distribution of charges across the cell wall, and in other myr-
iad cellular characteristics that are environmentally induced
and as cells mature and senesce. Understanding the mecha-
nisms and dynamics of their variable states is the domain of
microbiologists. Micro-organisms are nature’s product. Air-
borne dissemination is likely to be a natural and necessary
part of the life cycle of many micro-organisms that has oc-
curred since their emergence on this planet. Dispersal via the
atmosphere thus plays a central role in concepts of micro-
bial biogeography such as distance-decay or taxa-area rela-
tionships (Green and Bohannan, 2006). In the evolutionary
history of micro-organisms, adaptation to conditions in the
atmosphere has likely had a consequence on microbial popu-
lation genetics and genome structure. The importance of se-
lection pressures related to the interplay of micro-organisms
with atmospheric conditions and processes for the evolution-
ary history of micro-organisms is an open field for novel re-
search. Among the different sources of micro-organisms in
the atmosphere, plants in particular make an important con-
tribution. A role for agronomists and plant biologists in elu-
cidating mechanisms of emission of micro-organisms into
the atmosphere, their dissemination and ultimate fate clearly
points to the need for interdisciplinary research.

2 Micro-organisms are a component of the omnipresent
biological aerosols

For the past 200 years, research in the field of aerobiol-
ogy has focused primarily on describing the types and tax-
onomic groups of biological particles in the atmosphere and
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Table 1. Cellular fraction in atmospheric aerosols by number. The fraction by mass is roughly the same (Gruber and Jaenicke, 1999; Gruber
et al., 1999; Jaenicke et al., 2000; Matthias-Maser et al., 1995; Matthias-Maser and Obolkin, 2000; White et al., 1999).

Location Cellular fraction by number,r >0.2 µm Reference

Helgoland 15.3% (Gruber et al., 1999)
North Sea (3000 m altitude) 15% (Gruber et al., 1999)
Mainz 23.7% (Matthias-Maser et al., 1995)
Southern Atlantic Ocean 16.7% (Matthias-Maser et al., 1995)
Baikal, Siberia 20% (T. Khodzer, personal communication, 2007)
Jungfraujoch (3500 m altitude) 13.1% (Matthias-Maser et al., 2000)
Mace Head, Ireland 30% (continent)

40% (marine)
(Jennings et al., 1999)

Balbina, Amazon 74% (by volume) (Graham et al., 2003)

the spatio-temporal variations in their abundance. The year
1847 can be considered as the starting point of aerobiology
in a relatively modern sense when Ehrenberg published his
monograph on “Passat dust and blood rain – a great invisible
organic action and life in the atmosphere” (Krumbein, 1995).
By 1849 figures had been published with detailed pictures
of particles, especially biological particles including pollen,
spores and fragments of organisms (Ehrenberg, 1849). Inter-
est eventually shifted to the micro-organisms in the air. Sci-
entific associations on aerobiology were founded and books
and articles published (Edmonds and Benninghoff, 1973; Ed-
monds, 1979; Gregory, 1961). On the other hand, the newly
emerging field of air chemistry (Junge, 1963) did not even
mention the presence of biological particles in the air. The
main reason might be that micro-organisms are counted as
particles per m3, while atmospheric particles in general are
numbered in the tens of thousands per cm3. The exclusion of
biological particles has been perpetuated in discussions of air
chemistry and climate (WMO/UNEP, 2001). In a recent ap-
peal to “put the challenge back into aerobiology”, scientists
in this field suggest intensifying the study of aerial move-
ment of biological particles, and standardizing monitoring
techniques and expanding monitoring networks to improve
forecasting movement of biota important particularly to agri-
culture and human health (Comtois and Isard, 1999). The
questions we envision on the frontier of aerobiology today
encompass but go beyond the needs of a census.

In 1993, an IGAP (International Global Aerosol Program)
workshop in Geneva defined primary biological aerosol par-
ticles as airborne solid particles (dead or alive) that are
or were derived from living organisms, including micro-
organisms and fragments of all varieties of living things. Ac-
cording to the recent work of Jaenicke (2005) about 25% of
the particles suspended in air (by mass or number) in the size
range of 0.2 to 50 µm are primary biological aerosol particles.
This estimate is based on numerous observations, mainly via
staining methods to distinguish individual protein-containing
particles from others. In other work, particles smaller than
2 µm have been distinguished by morphology as well as typ-

ical elements (Matthias-Maser and Jaenicke, 1991). Other
estimates are presented in Table 1. Over the Amazon, it is
not surprising that 74% of the aerosol volume (or mass) con-
sists of biological particles (Table 1). However, the pres-
ence of about 20% world-wide is surprising. According to
recent estimates, among the naturally present ice nucleators
in fresh snow collected from diverse geographical sites and
active at relatively warm temperatures (−7◦C), over 100 of
these particles per L are of biological origin (Christner et
al., 2008). In 16 out of 19 samples, ice nucleators sensi-
tive to boiling (and hence likely to be proteinaceous) con-
stituted all of these warm temperature nuclei; and in 10 of
the 19 samples over half of these nuclei were also sensitive
to lysozyme, thus indicating that they were associated with
bacterial membranes.. This abundance of biological parti-
cles in the air certainly raises the question of the world-wide
production of such particles. Jaenicke (Jaenicke, 2005) has
estimated that the major sources of particles in Earth’s at-
mosphere – desert, oceans, and the biosphere – are of equal
strength. But, the importance of micro-organisms, or of any
organism, as a component of aerosols and as players in atmo-
spheric physico-chemical processes is likely to vary substan-
tially under different environmental conditions. As for min-
eral aerosols, micro-organisms originate from sources and
during seasons that are associated with their specific habi-
tats. This gives rise to the important spatial and temporal
variability of quantities of micro-organisms in the air (Bauer
et al., 2002; Ross et al., 2003; Sattler et al., 2001).

The clear take-home message from two centuries of inves-
tigations is that biological particles in the atmosphere are om-
nipresent and that micro-organisms can be an important com-
ponent of these biological particles. Micro-organisms are
particular abundant during periods favorable for disease of
crop plants caused by fungi with aerially disseminated spores
(Stakman and Christensen, 1946) and of human activities
that are particularly important in releasing microbial parti-
cles into the atmosphere such combining and other activities
associated with crop harvest (Lighthart, 1997). Concentra-
tions of bacteria, for example, near the canopy level have
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been observed to range between thousands to 108 bacteria m3

(Lighthart, 1997). Among the bacteria detected in the atmo-
sphere, many are Gram-positive and include spore-formers
such asBacillus andMicrobacteriumspp. which were par-
ticularly dominant in the air during a dust event (Kellogg
and Griffin, 2006). But Gram-negative bacteria, having a
cell wall that is considered to be more fragile than that
of Gram-positive bacteria, have also been found (Lighthart,
1997). Among the fungi, spores similar to those fromCla-
dosporium, Aspergillaceae, Alternaria, Botrytis, and various
Basidomycetes (Coprinus, Ustilago) have been frequently
observed in the atmosphere (Gregory, 1961; Kellogg and
Griffin, 2006), but spores ofCladosporiumspp. seem to
be numerically the most dominant. Viruses have also been
observed in the atmosphere, in particular in aerosols over
the sea surface (Aller and Kusnetsova, 2005) and in clouds
(Castello et al., 1995), and virus-like particles have been re-
ported to be associated with transoceanic dust (Griffin et al.,
2001).

Special mention should be made ofPseudomonas sy-
ringae. This Gram-negative plant pathogenic bacterium is
not the most abundant of the micro-organisms present in the
atmosphere (Lighthart, 1997), but it will very likely become
one of the most highly studied organisms with regard to po-
tential impact on atmospheric processes. This is due in par-
ticular to its well-known activity as an ice nucleator at tem-
peratures near zero (M̈ohler et al., 2007; reviewed by Mor-
ris et al., 2004), and to its significant upward flux in the at-
mosphere (Lindemann et al., 1982), its presence in clouds
(Amato et al., 2007b; Sands et al., 1982), its potential ac-
tivity as a cloud condensation nucleus (Snider et al., 1985),
and recent observations about its abundance in snow and
rain (Morris et al., 2008). Furthermore, all strains ofP. sy-
ringaeisolated from snow and rain by Morris and colleagues
were ice nucleation active at temperatures between−2◦C
and−6◦C whereas not all strains of this bacterium isolated
from various other substrates (including plants, water and
epilithic biofilms) were active as ice nucleators (Morris et
al., 2008). A few other species of plant-associated bacte-
ria (includingXanthomonassp.,Pantoea agglomerans, and
otherPseudomonasspp.) as well as the plant associated fun-
gusFusarium avenaceum(Pouleur et al., 1992) are known
to be ice nucleation active but very little, relative toP. sy-
ringae, is known about their abundance in the atmosphere.
Amato and co-workers have recently reported the isolation
of F. avenaceumfrom clouds at about 1450 m altitude (Am-
ato et al., 2007b) in central France. Algae are also known to
be readily disseminated in the air and a few species are ice
nucleation active at temperatures as warm as−6◦C (Wor-
land and Lukesova, 2000). But there have been no studies
on the presence of ice nucleation active algal species in the
atmosphere. However, several authors have argued that al-
gae and other microbes may play an active role in the atmo-
sphere, for instance in ice nucleation and precipitation (Ariya
and Amyot, 2004; Hamilton and Lenton, 1998; Möhler et al.,

2007; Morris et al., 2004; Szyrmer and Zawadzki, 1997).
This qualitative and quantitative information about biolog-

ical aerosols and the microbial components is, nevertheless,
subject to variation as a function of altitude, region (rural,
urban, forest, ocean, etc.) and climatic factors (temperature,
relative humidity, rainfall, wind, etc). Furthermore, it has
been known for quite some time that micro-organisms, and
in particular fungal spores and bacteria, can be present up to
high altitudes – between 1 and 7 km above the Earth’s sur-
face (for a review see Gregory, 1961). But more recently it
was suggested that altitude has an effect on the composition
to the air spora and that there is a particular “alpine type” of
air microflora (Ebner et al., 1989). A distinct phylogenetic
signature of airborne bacteria found in snow cover has been
observed in a high alpine station, leading Alfreider and col-
leagues (Alfreider et al., 1996) to propose a dominant role of
the atmosphere in the dispersal of bacteria. Land use (urban
vs. rural land, or different degrees of urbanization) also has
an impact on the occurrence of spores and daily concentra-
tion in the air (Calderon et al., 1997; Kasprzyk and Worek,
2006).

The most prevailing and well-studied effects on air flora
variability are those due to meteorological factors such as
wind speed and direction, relative humidity, rainfall and so-
lar radiation (Jones and Harrison, 2004). The chemical com-
position and pH of aerosols can also influence microflora in
the air. Several authors have reviewed the influence of me-
teorological factors on bacteria, fungi and pollen in the at-
mosphere (Jones and Harrison, 2004; Lighthart and Shaffer,
1994). The abundance of fungi in the air and the taxonomic
groups represented in an outdoor sampling campaign con-
ducted in Turin, Italy depended on the temperature, relative
humidity and rainfall (Marchisio et al., 1997). The abun-
dance ofAlternaria and Cladosporiumspp. in the air has
also been reported to vary with different bioclimatic condi-
tions (Rodriguez-Rajo et al., 2005). In a study of the abun-
dance of viable spores of the plant pathogenic fungusGib-
berella zeaeat 60 m above the ground, more viable spores
were detected under cloudy conditions than under clear con-
ditions, but fewer were found during rainfall (Maldonado-
Ramirez et al., 2005) presumably because they were washed
out. The role of sandstorms in disseminating fungi, bacte-
ria and pollen via the air has been reviewed (Kellogg and
Griffin, 2006). The daily concentrations of air-borne bacte-
ria and fungal spores at sampling sites in mid-ocean were
significantly correlated with daily desert dust concentration
in the air (Griffin et al., 2006). Moreover, the composi-
tion of the air flora in terms of certain fungal spores can
vary considerably during dust transport episodes (Wu and
Tsai, 2004). Concerning the chemical composition of the at-
mosphere, air-borne microbial concentrations have been ob-
served to increase with increasing atmospheric CO2 concen-
trations (Klironomos et al., 1997). According to the authors
of that study, this phenomenon is probably linked to the in-
crease of spore production on substrates with increasing CO2
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concentrations. The pH in the atmosphere can also influence
the abundance and types of microflora present. In clouds,
an acidic pH favors the presence of fungi and spore-forming
bacteria whereas a neutral pH is favourable to the presence of
a greater diversity of micro-organisms (Amato et al., 2005).

Seasonal and daily variation in the amount and kinds of
micro-organisms in the air is also remarkable. High concen-
trations of air-borne bacteria and fungal spores frequently
occur from spring to fall in temperate areas of the world,
mainly due to the fact that leaf surfaces are a major source of
fungi (Levetin and Dorsey, 2006; Mitakakis et al., 2001) and
bacteria (Tong and Lighthart, 2000) in the air. The higher
concentrations of bacteria observed in the summer (July–
August) over two agricultural sites in Oregon (USA) may
reflect the flux from agricultural sources and activities and
dry dusty soil conditions at this time of the year (Tong and
Lighthart, 2000). Even on the scale of a single day, the air-
borne spore concentration increased from 20 000 spores/m3

to 170 000 spores/m3 in a 2-h period in the area around Tulsa,
Oklahoma (USA) (Burch and Levetin, 2002). Diurnal peri-
odicity has also been observed (Lindemann and Upper, 1985;
Tong and Lighthart, 2000). On the other hand, for the fungus
Gibberella zeae, no differences were observed in air-borne
concentrations between the day and night at 60 m above the
ground (Maldonado-Ramirez et al., 2005).

3 Atmospheric transportation of micro-organisms

The mechanisms that contribute to the abundance and ubiq-
uity of micro-organisms in the atmosphere are the founda-
tion of the roles they can play in atmospheric processes. Via
these mechanisms, sufficient numbers of micro-organisms
can be transported to the pertinent atmospheric sites. These
mechanisms include those related to emission from the var-
ious sources, transport in the atmosphere and deposition.
The mechanisms of microbial survival in the atmosphere
are also critical to atmospheric processes requiring active
metabolism. Aside from discharge of fungal spores from
conidiophores or from turgid structures such as asci (Jones
and Harrison, 2004), very little is known about emission
mechanisms, particularly for bacteria. As a consequence,
we do not sufficiently understand the mechanisms underly-
ing source strength. Likewise, the little information avail-
able about the properties of particles transporting micro-
organisms, and again particularly for bacteria, leaves us won-
dering about how micro-organisms survive, the factors that
contribute to their metabolic activity in the atmosphere, and
the most appropriate values for particle parameters in models
to estimate their trajectories.

Above water surfaces, creation of aerosols containing
micro-organisms occurs by bubble bursting. This can lead to
biological particles in the atmosphere in remote regions such
as above the central Arctic Ocean (Leck and Bigg, 2005). On
land, aerial parts of plants are considered a principal source

of air-borne micro-organisms (Lighthart, 1997). Creation of
aerosols containing micro-organisms that inhabit plant sur-
faces is likely due to wind stress that might directly lift
micro-organism or via secondary impacts due to wind stress-
induced deformations of leaves. Drying of leaf surfaces due
to biological processes or to changing atmospheric condi-
tions could also enhance the emission of plant-associated
micro-organisms. We can speculate that micro-organisms
might also be released into the atmosphere even under calm
conditions if microbial growth leads to population sizes that
exceed the physical carrying capacity of the plant surface.
These mechanisms might be compounded by changes in the
charge of leaf surfaces during the day that would modify at-
traction or repulsion of micro-organisms (Leach, 1987).

Understanding mechanisms of emission is linked to our
capacity to measure flux above suspected sources and in re-
lation to changing conditions thought to influence emission.
Flux measurements are also a basic variable in models to pre-
dict coincidence of sufficient particle load and atmospheric
conditions that contribute to atmospheric processes. Calcu-
lation of microbial flux requires measurements of microbial
particle concentration at several heights combined with esti-
mations of latent heat flux. Measurement of the concentra-
tion of the ensemble of biological particles and their physico-
chemical characterization are among the major challenges
that have been pre-occupying aerobiology since its inception.
Bio-aerosols include a wide range of organic matter with a
large degree of variability in physical and chemical charac-
teristics such as size, shape, phase, composition, structure,
solubility, volatility, hygroscopicity and surface properties.
These aerosols can be single spores or pollen grains, bacteria
and viruses; aggregates of one or several types of particles;
and products and by-products of, or attached to non biolog-
ical particles (Sun and Ariya, 2006). Common techniques
for measurement of aerosol number density, shape, optical
and surface properties, as well as chemical characterization
of condensed and semi-volatile matter have been deployed,
but none can fully capture the physical and chemical com-
plexity of biological matter. Several tools available to en-
vironmental microbiologists have also been widely used in
sampling and analysis of biological aerosols. To date, exist-
ing measurement techniques are tailored towards the appli-
cations and goals that vary significantly from one domain of
research to another thereby leaving room for much needed
complementarity of physical-chemical and biological analy-
ses. Via this paper, we intensify the challenge of measuring
particle numbers and properties by raising questions of the
appropriate properties of micro-organisms and of the whole
of biological particles to be used as counters. Clearly, mea-
surements of total biological particle concentration, or viable
microbial concentration, or concentration of a single species
of interest will only lead us part of the way to the estimates
needed. Concomitant measures of occurrence of microbial
particles with their capacity as, for example, condensation or
ice nuclei, or as binding sites or metabolic sinks for various
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atmospheric chemicals will be needed. There is a need to
determine which particle properties are most relevant. Tech-
niques are needed that allow detection over space and rela-
tively short time intervals of these particles, whose concen-
trations are likely to be low. The development of in situ bio-
aerosol analyzers with a wide dynamic range is highly de-
sirable to avoid the shortcomings associated with sampling.
Presently most sampling techniques have analytical biases
affecting detection, characterization, mobility and versatil-
ity, and potential contamination, whereas the existing in situ
methods are unable to capture detailed chemical characteris-
tics at sufficient detection limits.

Much of the data concerning the abundance of specific
micro-organisms in the air (such as the fungi and bacteria
cited above) are based on the growth of these organisms on
the culture media used for sampling. This approach has
hidden the nature of the particles with which these micro-
organisms are associated. From direct observation of air-
borne particles, we know that fungi in the atmosphere may
be present as single spores or clusters (Aylor and Ferrandino,
1985; Bainbridge and Stedman, 1979; Pinkerton et al., 1998)
or as fragments (Fuzzi et al., 2007). For bacteria, size-graded
samples from Andersen spore samplers, for example, indi-
cate that a large proportion of viable air-borne bacteria are
associated with particles that are much larger than the size
of single bacterial cells (Lighthart, 1997). Observations of
clusters containing bacterial-like particles and in some cases
covered with mucus-like material (Leck and Bigg, 2005;
Lighthart, 1997) support the suggestion that chunks or rem-
nants of microbial biofilms might be a sort of sailing ship
for bacteria offering both a means of take-off and survival
in the air (Morris and Monier, 2003). But overall, too lit-
tle is known about the properties of particles that transport
micro-organisms in the air. Specific information on the size
and nature of the microbe-carrying particles is essential for
transport models dependent on parameters concerning aero-
dynamic properties of particles and is also important for the
development of detection tools that capture or detect parti-
cles based on size, shape, phase and chemical characteris-
tics. Currently, only a very limited number of model devel-
opments and applications deal with atmosphere transport of
biological particles (Helbig et al., 2004; Isard et al., 2005;
Pasken and Pietrowicz, 2005; Sofiev et al., 2006). These
models suffer from a lack of experimental data that allow
parameterization of emission fluxes and of other processes
which micro-organisms or other biological particles undergo
during transport.

4 Consolidating microbiology and atmospheric sciences
in the upcoming era of bio-meteorology

Research on the role of micro-organisms in meteorological
phenomena and in atmospheric processes in general is part
of a growing interest in the importance of the biosphere on
climate change. This is an under-explored component of a
research field referred to as bio-meteorology. An important
challenge for the next decades regarding micro-organisms
is to go beyond descriptions of microbial abundance in the
atmosphere toward an understanding of their dynamics in
terms of both biological and physico-chemical properties and
of the relevant transport processes at different scales. Spe-
cific examples of unresolved questions in this regard are
listed in the text above. Other examples are also presented
in the other review papers in this issue. The main roles that
have been evoked in this and other reviews are as ice nucle-
ators, as cloud condensation nuclei and as chemical reactors.
The evaluation of some of these properties, such as cloud
condensation nucleation are being facilitated by the emer-
gence of new techniques (Roberts and Nenes, 2005). As we
explore the interactions of micro-organisms with the atmo-
sphere, hypotheses about the importance of other roles will
likely emerge.

An additional challenge is to develop this understanding
under contexts pertinent to their potential role in atmospheric
processes thereby providing support for their specific in-
volvement in these processes. This can implicate construc-
tion of conceptual and numerical models of microbial flux
into the environment; of trajectories, survival, multiplica-
tion; metabolic activity and perhaps even genetic exchange;
and of the degree to which different species or physiologi-
cal states of micro-organisms mediate processes affecting at-
mospheric chemistry, the formation of clouds, precipitation
and radiative forcing. Sattler, Puxbaum and Psenner (Sat-
tler et al., 2001) who found active bacteria in supercooled
cloud droplets, and Daniel Jacob (Dept. Earth and Plane-
tary Sciences, Harvard Univ., pers. comm.) considered pos-
sible implications of bacteria as sources of oxygenated or-
ganics in the atmosphere with implications for HOx radical
chemistry and organic aerosol formation. The role of air-
borne bacteria as potential sources and sinks for acetone and
other volatile organics in the atmosphere is one of the inter-
esting questions in microbiologicall meteorology, with impli-
cations for climate and weather (Amato et al., 2007a). In the
face of the foreseen climate changes, an important goal of fu-
ture research would be to quantify the extent to which micro-
organisms are involved in atmospheric processes that could
mitigate the undesirable foreseen changes and to predict how
human activities might enhance some of these processes. For
some microbial species we may discover that the negative
roles with which they are identified today (plant pathogens,
for example) are counterbalanced by beneficial roles in the
atmosphere thereby bringing into question the need for new
approaches to managing these microbial populations in the
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environment that account for both of these seemingly oppos-
ing roles.

This research will require truly interdisciplinary collabora-
tion both in the laboratory and in the field. Students trained in
both the physical and biological sciences will bridge the gap
among senior scientists from different disciplines. Currently,
few students take the risk to attain this multiple competency
in their training because the extra investment in coursework
is not always readily compatible with the requirements and
the time constrains imposed by their training program. A
greater flexibility of training programs in this regard will en-
hance progress of this and other research themes in environ-
mental sciences. Coordinated sampling campaigns at multi-
ple field sites will also be needed. This will likely require
some sort of coordinating body or a well-orchestrated con-
sortium of laboratories. Finally, advances in numerical mod-
els concerning cloud microphysics to air pollution at local,
regional and global scales could aid this effort. During the
last three decades sophisticated numerical models for a va-
riety of atmospheric scales have been developed. This in-
cludes very detailed models with a high spatial and temporal
resolution and with detailed microphysics. Corresponding
chemistry and aerosol modules have been developed. Some
models permit the study of interactions of cloud physics and
aerosol physics including chemistry. Although there has
been a major leap in the development of numerical mod-
els, there are still major gaps in these models for properly
capturing elemental physical and chemical processes such as
aerosol-cloud interactions. This has been noted as a major
uncertainty for predicting climate change. Furthermore, only
a very limited number of model applications deal with bi-
ological particles (and even less so for microbial particles),
their sources and their possible environmental implications.
Extensive modelling that is complementary to field and lab-
oratory multi-disciplinary studies of bio-aerosols is needed.
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