99 research outputs found

    A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    Get PDF
    BACKGROUND: Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS: The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION: Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution

    Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania

    Get PDF
    Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied–despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania

    Multilocus Genotyping of Human Giardia Isolates Suggests Limited Zoonotic Transmission and Association between Assemblage B and Flatulence in Children

    Get PDF
    Giardia intestinalis is a protozoan parasite found world-wide and it is a major cause of diarrhea in humans and other mammals. The genetic variability within G. intestinalis is high with eight distinct genotypes or assemblages (A-H). Here we performed sequence-based multilocus genotyping of around 200 human Giardia isolates. We found evidence of limited zoonotic transmission of certain A subtypes and an association between flatulence and assemblage B infection in children. This shows that it is important to investigate different assemblages and sub-assemblages of G. intestinalis in human infections in order to understand the clinical significance, zoonotic potential, sequence divergence, and transmission pathways of this parasite

    Female responses to experimental removal of sexual selection components in Drosophila melanogaster

    Get PDF
    Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies

    Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Giardia intestinalis </it>is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the <it>Giardia intestinalis </it>species, we have performed genome sequencing and analysis of a wild-type <it>Giardia intestinalis </it>sample from the assemblage E group, isolated from a pig.</p> <p>Results</p> <p>We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse <it>Giardia intestinalis </it>isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of <it>Giardia </it>revealed differential rates of divergence among cellular processes.</p> <p>Conclusions</p> <p>Our results indicate that despite a well conserved core of genes there is significant genome variation between <it>Giardia </it>isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the <it>Giardia </it>genomes and enables the identification of functionally important variation.</p

    Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects

    Get PDF
    Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/-) and heterozygous Alkbh1(+/-) offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/-) adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore