33 research outputs found
An optimal Earth Trojan asteriod search strategy
Trojan asteroids are minor planets that share the orbit of a planet about the Sun and librate around the L4 or L5 Lagrangian points of stability. They are important solar-system fossils because they carry information on early Solar system formation, when collisions between bodies were more frequent. Discovery and study of terrestrial planet Trojans will help constrain models for the distribution of bodies and interactions in the inner Solar system. Since the discovery of the first outer planet Trojan in 1906, several thousand Jupiter Trojans have been found. Of the terrestrial planets, there are four known Mars Trojans, and one Earth Trojan has been recently discovered. We present a new model that constrains optimal search areas, and imaging cadences for narrow and wide-field survey telescopes including the Gaia satellite for the most efficient use of telescope time to maximize the probability of detecting additional Earth Trojans
Oscillatory activity in prefrontal and posterior regions during implicit letter-location binding.
Many cognitive abilities involve the integration of information from different modalities, a process referred to as “binding.” It remains less clear, however, whether the creation of bound representations occurs in an involuntary manner, and whether the links between the constituent features of an object are symmetrical. We used magnetoencephalography to investigate whether oscillatory brain activity related to binding processes would be observed in conditions in which participants maintain one feature only (involuntary binding); and whether this activity varies as a function of the feature attended to by participants (binding asymmetry). Participants performed two probe recognition tasks that were identical in terms of their perceptual characteristics and only differed with respect to the instructions given (to memorize either consonants or locations). MEG data were reconstructed using a current source distribution estimation in the classical frequency bands. We observed implicit verbal–spatial binding only when participants successfully maintained the identity of consonants, which was associated with a selective increase in oscillatory activity over prefrontal regions in all frequency bands during the first half of the retention period and accompanied by increased activity in posterior brain regions. The increase in oscillatory activity in prefrontal areas was only observed during the verbal task, which suggests that this activity might be signaling neural processes specifically involved in cross-code binding. Current results are in agreement with proposals suggesting that the prefrontal cortex function as a “pointer” which indexes the features that belong together within an object
The landscape of somatic copy-number alteration across human cancers
available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833
Predictions for the detection of Earth and Mars Trojan asteroids by the Gaia satellite
The European Space Agency Gaia satellite, planned for launch in late 2013, will perform systematic astrometric observations of the whole sky over a five year period. During this mission many thousands of Solar System Objects down to magnitude V =20 will be observed including Near-Earth Asteroids and objects at Solar elongations a slow as 45 °, which are difficult to observe with ground-based telescopes. We simulated the detection of Trojan asteroids in the orbits of Earth and Mars by Gaia. We find that Gaia will not detect the Earth Trojan 2010 TK7 although it will detect any Earth Trojans with diameters larger than 600 m. We also find that Gaia will detect the currently known Mars Trojans and could discover more than 100 new Mars Trojans as small as 400 m in diameter. The results of the Gaia mission will test the predictions about the Mars Trojan asteroid population and lead to greater understanding about the evolution of the Solar System
Brachypodium as a model for the grasses: Today and the future
International audienc