200 research outputs found

    An environmental control box for serial crystallography enables multi-dimensional experiments

    Get PDF
    We present a new environmental enclosure for fixed-target, serial crystallography enabling full control of both the temperature and humidity. While maintaining the relative humidity to within a percent, this enclosure provides access to X-ray diffraction experiments in a wide temperature range from below 10 °C to above 80 °C. Coupled with the LAMA method, time-resolved serial crystallography experiments can now be carried out at truly physiological temperatures, providing fundamentally new insight into protein function. Using the hyperthermophile enzyme xylose isomerase, we demonstrate changes in the electron density as a function of increasing temperature and time. This method provides the necessary tools to successfully carry out multi-dimensional serial crystallography

    Charging of drops impacting onto superhydrophobic surfaces

    Get PDF
    When neutral water drops impact and rebound from superhydrophobic surfaces, they acquire a positive electrical charge. To measure the charge, we analyzed the trajectory of rebounding drops in an external electric field by high-speed video imaging. Although this charging phenomenon has been observed in the past, little is known about the controlling parameters for the amount of drop charging. Here we investigate the relative importance of five of these potential variables: impact speed, drop contact area, contact line retraction speed, drop size, and type of surface. We additionally apply our previously reported model for sliding drop electrification to the case of impacting drops, suggesting that the two cases contain the same charge separation mechanism at the contact line. Both our experimental results and our theoretical model indicate that maximum contact area is the dominant control parameter for charge separation

    Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation

    Get PDF
    The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK(a) from 11.1 ( wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild- type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photoinduced protein structural changes that in the wild- type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc -> Pfr transition and most likely coupled to the transient proton re- uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.Fil: von Stetten, David. Technische Universität Berlin; AlemaniaFil: Seibeck, Sven. Freie Universität Berlin.; AlemaniaFil: Michael, Norbert. Freie Universität Berlin.; AlemaniaFil: Scheerer, Patrick. Charité Universitätsmedizin Berlin; AlemaniaFil: Mroginski, Maria Andrea. Technische Universität Berlin; AlemaniaFil: Murgida, Daniel Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Technische Universität Berlin; AlemaniaFil: Krauss, Norbert. Freie Universität Berlin.; AlemaniaFil: Heyn, Maarten P.. Charité Universitätsmedizin Berlin; AlemaniaFil: Hildebrandt, Peter. Technische Universität Berlin; AlemaniaFil: Borucki, Berthold. Freie Universität Berlin.; AlemaniaFil: Lamparter, Tilman. Freie Universität Berlin.; Alemani

    Millisecond cryo-trapping by the spitrobot crystal plunger simplifies time-resolved crystallography

    Get PDF
    We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with millisecond time-resolution. Canonical micromesh loops are mounted on an electropneumatic piston, reactions are initiated via the liquid application method (LAMA), and finally intermediate states are cryo-trapped in liquid nitrogen. We demonstrate binding of several ligands in microcrystals of three enzymes, and trapping of reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase

    Classtalk: A Classroom Communication System for Active Learning

    Get PDF
    This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional

    Drivers and determinants of strain dynamics following fecal microbiota transplantation

    Get PDF
    Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice
    • …
    corecore