262 research outputs found

    Nonadiabatic resonant dynamic tides and orbital evolution in close binaries

    Get PDF
    This investigation is devoted to the effects of nonadiabatic resonant dynamic tides generated in a uniformly rotating stellar component of a close binary. The companion is considered to move in a fixed Keplerian orbit, and the effects of the centrifugal force and the Coriolis force are neglected. Semi-analytical solutions for the linear, nonadiabatic resonant dynamic tides are derived by means of a two-time variable expansion procedure. The solution at the lowest order of approximation consists of the resonantly excited oscillation mode and displays a phase shift with respect to the tide-generating potential. Expressions are established for the secular variations of the semi-major axis, the orbital eccentricity, and the star's angular velocity of rotation caused by the phase shift. The orders of magnitude of these secular variations are considerably larger than those derived earlier by Zahn (1977) for the limiting case of dynamic tides with small frequencies. For a 5 solar mass ZAMS star, an orbital eccentricity e = 0.5, and orbital periods in the range from 2 to 5 days, numerous resonances of dynamic tides with second-degree lower-order gravity modes are seen to induce secular variations of the semi-major axis, the orbital eccentricity, and the star's angular velocity of rotation with time scales shorter than the star's nuclear life time.Comment: accepted for publication in A&A, 13 page

    The r-mode instability: Analytical solution with gravitational radiation reaction

    Full text link
    Analytical r-mode solutions are investigated within the linearized theory in the case of a slowly rotating, Newtonian, barotropic, non-magnetized, perfect-fluid star in which the gravitational radiation (GR) reaction force is present. For the GR reaction term we use the 3.5 post-Newtonian order expansion of the GR force, in order to include the contribution of the current quadrupole moment. We find the explicit expression for the r-mode velocity perturbations and we conclude that they are sinusoidal with the same frequency as the well-known GR force-free linear r-mode solution, and that the GR force drives the r-modes unstable with a growth timescale that agrees with the expression first found by Lindblom, Owen and Morsink. We also show that the amplitude of these velocity perturbations is corrected, relatively to the GR force-free case, by a term of order W^6, where W is the angular velocity of the star.Comment: 11 pages, RevTeX4. Discussion on the nonlinear theory removed. Published versio

    On a mechanism for enhancing magnetic activity in tidally interacting binaries

    Get PDF
    We suggest a mechanism for enhancing magnetic activity in tidally interacting binaries. We suppose that the deviation of the primary star from spherical symmetry due to the tidal influence of the companion leads to stellar pulsation in its fundamental mode. It is shown that stellar radial pulsation amplifies torsional Alfv{\'e}n waves in a dipole-like magnetic field, buried in the interior, according to the recently proposed swing wave-wave interaction (Zaqarashvili 2001). Then amplified Alfv{\'e}n waves lead to the onset of large-scale torsional oscillations, and magnetic flux tubes arising towards the surface owing to magnetic buoyancy diffuse into the atmosphere producing enhanced chromospheric and coronal emission.Comment: Accepted in Ap

    Age determination of the HR8799 planetary system using asteroseismology

    Full text link
    Discovery of the first planetary system by direct imaging around HR8799 has made the age determination of the host star a very important task. This determination is the key to derive accurate masses of the planets and to study the dynamical stability of the system. The age of this star has been estimated using different procedures. In this work we show that some of these procedures have problems and large uncertainties, and the real age of this star is still unknown, needing more observational constraints. Therefore, we have developed a comprehensive modeling of HR8799, and taking advantage of its gamma Doradus-type pulsations, we have estimated the age of the star using asteroseismology. The accuracy in the age determination depends on the rotation velocity of the star, and therefore an accurate value of the inclination angle is required to solve the problem. Nevertheless, we find that the age estimate for this star previously published in the literature ([30,160] Myr) is unlikely, and a more accurate value might be closer to the Gyr. This determination has deep implications on the value of the mass of the objects orbiting HR8799. An age around ≈\approx 1 Gyr implies that these objects are brown dwarfs.Comment: 5 pages, 3 figures, accepted in MNRAS Letter

    Theory of Stellar Oscillations

    Full text link
    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Second-order rotational effects on the r-modes of neutron stars

    Get PDF
    Techniques are developed here for evaluating the r-modes of rotating neutron stars through second order in the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular application here. The bulk-viscosity coupling to the r-modes, which appears first at second order, is evaluated. The bulk-viscosity timescales are found here to be longer than previous estimates for normal neutron stars, but shorter than previous estimates for strange stars. These new timescales do not substantially affect the current picture of the gravitational radiation driven instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte

    CCSD(T) Study of CD3-O-CD3 and CH3-O-CD3 Far-Infrared Spectra

    Get PDF
    From a vibrationally corrected 3D potential energy surface determined with highly correlated ab initio calculations (CCSD(T)), the lowest vibrational energies of two dimethyl-ether isotopologues, 12CH3–16O–12CD3 (DME-d3) and 12CD3–16O–12CD3 (DME-d6), are computed variationally. The levels that can be populated at very low temperatures correspond to the COC-bending and the two methyl torsional modes. Molecular symmetry groups are used for the classification of levels and torsional splittings. DME-d6 belongs to the G36 group, as the most abundant isotopologue 12CH3–16O–12CH3 (DME-h6), while DME-d3 is a G18 species. Previous assignments of experimental Raman and far-infrared spectra are discussed from an effective Hamiltonian obtained after refining the ab initio parameters. Because a good agreement between calculated and experimental transition frequencies is reached, new assignments are proposed for various combination bands corresponding to the two deuterated isotopologues and for the 020 → 030 transition of DME-d6. Vibrationally corrected potential energy barriers, structural parameters, and anharmonic spectroscopic parameters are provided. For the 3N – 9 neglected vibrational modes, harmonic and anharmonic fundamental frequencies are obtained using second-order perturbation theory by means of CCSD and MP2 force fields. Fermi resonances between the COC-bending and the torsional modes modify DME-d3 intensities and the band positions of the torsional overtones

    The planetary system host HR\,8799: On its λ\lambda Bootis nature

    Full text link
    HR\,8799 is a λ\lambda Bootis, γ\gamma Doradus star hosting a planetary system and a debris disk with two rings. This makes this system a very interesting target for asteroseismic studies. This work is devoted to the determination of the internal metallicity of this star, linked with its λ\lambda Bootis nature (i.e., solar surface abundances of light elements, and subsolar surface abundances of heavy elements), taking advantage of its γ\gamma Doradus pulsations. This is the most accurate way to obtain this information, and this is the first time such a study is performed for a planetary-system-host star. We have used the equilibrium code CESAM and the non-adiabatic pulsational code GraCo. We have applied the Frequency Ratio Method (FRM) and the Time Dependent Convection theory (TDC) to estimate the mode identification, the Brunt-Va\"is\"al\"a frequency integral and the mode instability, making the selection of the possible models. When the non-seismological constraints (i.e its position in the HR diagram) are used, the solar abundance models are discarded. This result contradicts one of the main hypothesis for explaining the λ\lambda Bootis nature, namely the accretion/diffusion of gas by a star with solar abundance. Therefore, according to these results, a revision of this hypothesis is needed. The inclusion of accurate internal chemical mixing processes seems to be necessary to explain the peculiar abundances observed in the surface of stars with internal subsolar metallicities. The use of the asteroseismological constraints, like those provided by the FRM or the instability analysis, provides a very accurate determination of the physical characteristics of HR 8799. However, a dependence of the results on the inclination angle ii still remains. The determination of this angle, more accurate multicolour photometric observations, and high resolution spectroscopy can definitively fix the mass and metallicity of this star.Comment: 11 pages, 10 figures. Accepted for publication in MNRA
    • …
    corecore