172 research outputs found

    Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae

    Get PDF
    We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten protoplanetary nebulae and young planetary nebulae. The high spectral resolution provided by HIFI yields accurate measurements of the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H2^{18}O, HCN, SiO, etc, has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature Tk >~ 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, Tk ~ 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two-component models. We argue that the differences in temperature in the different nebulae can be due to cooling after the gas acceleration (that is probably due to shocks); for instance, CRL 618 is a case of very recent acceleration, less than ~ 100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated ~ 1000 yr ago. We also find indications that the densest gas tends to be cooler, which may be explained by the expected increase of the radiative cooling efficiency with the density.Comment: 24 pages, 31 figure

    Bladder Cancer Tissue-Based Biomarkers

    Get PDF
    This review aims to provide a practical update regarding the current role of tissue-based biomarkers in bladder cancer. Their prognostic and predictive role both in non-muscle-invasive (NMIBC) and in muscle-invasive disease (MIBC) has been reviewed with particular focus to their use in clinical practice. In summary, the literature on the prediction of disease recurrence in NMIBC is inconclusive, and there is little information on prediction of response to intravesical bacillus Calmette-Guerin (BCG). Concerning disease progression, external prospective validation studies suggest that FGFR3 mutation status and gene signatures may improve models that are based only on clinicopathologic information. In MIBC, tissue-based biomarkers are increasingly important, since they may predict the response to systemic chemotherapy and immunotherapy. In particular, the advent of molecular characterization promises to revolutionize the paradigm of decision-making in the treatment of MIBC. Molecular subtyping has been shown to improve the prediction of pathological stage at RC and to predict the response to systemic chemotherapy and immunotherapy. However, external and prospective validations are warranted to confirm these preliminary findings. Several different tissue-based biomarkers such as PD-1/PD-L1 expression, tumor mutational burden, and the analysis of tumor microenvironment, may in future play a role in selecting patients for systemic immunotherapy. However, to date, no pretreatment recommendations can be definitively made on the basis of any molecular predictors. In conclusion, despite the potential of tissue-based biomarkers, their use in bladder cancer should be limited to experimental settings

    Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study

    Get PDF
    Platelets of strontium hexaferrite (SrFe12O19, SFO), up to several micrometers in width, and tens of nanometers thick have been synthesized by a hydrothermal method. They have been studied by a combination of structural and magnetic techniques, with emphasis on Mössbauer spectroscopy and X-ray absorption based-measurements including spectroscopy and microscopy on the iron-L edges and the oxygen-K edge, allowing us to establish the differences and similarities between our synthesized nanostructures and commercial powders. The Mössbauer spectra reveal a greater contribution of iron tetrahedral sites in platelets in comparison to pure bulk material. For reference, high-resolution absorption and dichroic spectra have also been measured both from the platelets and from pure bulk material. The O-K edge has been reproduced by density functional theory calculations. Out-of-plane domains were observed with 180° domain walls less than 20 nm width, in good agreement with micromagnetic simulationsThis work is supported by the Spanish Ministry of Economy and Competitiveness through Projects MAT2015-64110-C2-1-P, MAT2015-64110-C2-2-P, MAT2015-66888-C3-1-R and by the European Commission through Project H2020 No. 720853 (Amphibian). These experiments were performed at the CIRCE, MISTRAL and BOREAS beamlines of the ALBA Synchrotron Light Facility. G.D.S. acknowledges the European Youth Employement Initiative and the Autonomous Community of Madrid for a one-year fellowship. Slovenian Research Agency is acknowledged for funding the research program Ceramics and complementary materials for advanced engineering and biomedical applications (P2-0087), CEMM, JSI for the use of TE

    Glycation does not modify bovine serum albumin (BSA)-induced reduction of rat aortic relaxation: The response to glycated and nonglycated BSA is lost in metabolic syndrome

    Get PDF
    The effects of nonglycated bovine serum albumin (BSA) and advanced glycosylation end products of BSA (AGE-BSA) on vascular responses of control and metabolic syndrome (MS) rats characterized by hypertriglyceridemia, hypertension, hyperinsulinemia, and insulin resistance were studied. Albumin and in vitro prepared AGE-BSA have vascular effects; however, recent studies indicate that some effects of in vitro prepared AGEs are due to the conditions in which they were generated. We produced AGEs by incubating glucose with BSA for 60 days under sterile conditions in darkness and at 37°C. To develop MS rats, male Wistar animals were given 30% sucrose in drinking water since weanling. Six month old animals were used. Blood pressure, insulin, triglycerides, and serum albumin were increased in MS rats. Contraction of aortic rings elicited with norepinephrine was stronger. There were no effects of nonglycated BSA or AGE-BSA on contractions in control or MS rats; however, both groups responded to L-NAME, an inhibitor of nitric oxide synthesis. Arterial relaxation induced using acetylcholine was smaller in MS rats. Nonglycated BSA and AGE-BSA significantly diminished relaxation in a 35% in the control group but the decrease was similar when using nonglycated BSA and AGE-BSA. This decrease was not present in the MS rats and was not due to increased RAGEs or altered biochemical characteristics of BSA. In conclusion, both BSA and AGE-BSA inhibit vascular relaxation in control artic rings. In MS rats the effect is lost possibly due to alterations in endothelial cells that are a consequence of the illness

    Activation of EGFR/ERBB2 via Pathways Involving ERK1/2, P38 MAPK, AKT and FOXO Enhances Recovery of Diabetic Hearts from Ischemia-Reperfusion Injury

    Get PDF
    This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction

    Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters

    Get PDF
    Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers

    Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging

    Get PDF
    An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals

    Open Versus Robotic Cystectomy: A Propensity Score Matched Analysis Comparing Survival Outcomes

    Get PDF
    BACKGROUND: To assess the differential effect of robotic assisted radical cystectomy (RARC) versus open radical cystectomy (ORC) on survival outcomes in matched analyses performed on a large multicentric cohort. METHODS: The study included 9757 patients with urothelial bladder cancer (BCa) treated in a consecutive manner at each of 25 institutions. All patients underwent radical cystectomy with bilateral pelvic lymphadenectomy. To adjust for potential selection bias, propensity score matching 2:1 was performed with two ORC patients matched to one RARC patient. The propensity-matched cohort included 1374 patients. Multivariable competing risk analyses accounting for death of other causes, tested association of surgical technique with recurrence and cancer specific mortality (CSM), before and after propensity score matching. RESULTS: Overall, 767 (7.8%) patients underwent RARC and 8990 (92.2%) ORC. The median follow-up before and after propensity matching was 81 and 102 months, respectively. In the overall population, the 3-year recurrence rates and CSM were 37% vs. 26% and 34% vs. 24% for ORC vs. RARC (all p values > 0.1), respectively. On multivariable Cox regression analyses, RARC and ORC had similar recurrence and CSM rates before and after matching (all p values > 0.1). CONCLUSIONS: Patients treated with RARC and ORC have similar survival outcomes. This data is helpful in consulting patients until long term survival outcomes of level one evidence is available

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients
    corecore