81 research outputs found
The iLearnRW game : support for students with dyslexia in class and at home
Dyslexia includes a large variety of literacy-related
difficulties which demands, in most cases, a personalised intervention.
However, as dyslexia affects a large fraction of the
population, schools cannot provide individual care for each
student. The iLearnRW game provides a tool for students to
work on their literacy skills following a personalised teaching
programme. The design of the game and adaptation mechanisms
integrated with it are aimed at maintaining student engagement
for the duration of an open-ended number of playing sessions,
while using a limited quantity of assets and literacy content. By
focusing on maintenance of engagement, we hope to improve
learning outcomes and motivate students to also play the game
outside of school.The authors would like to thank all the participants of
the experiments.This research was supported, in part, by the
ILearnRW (project no: 318803) FP7 ICT EU project.peer-reviewe
Fatty Acid Fingerprints and Hyaluronic Acid in Extracellular Vesicles from Proliferating Human Fibroblast-like Synoviocytes
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1–3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases
A computational approach towards conflict resolution for serious games
Conflict is an unavoidable feature of life, but the development of conflict resolution management skills can facilitate the parties involved in resolving their conflicts in a positive manner. The goal of our research is to develop a serious game in which children may experiment with conflict resolution strategies and learn how to work towards positive conflict outcomes. While serious games related to conflict exist at present, our work represents the first attempt to teach conflict resolution skills through a game in a manner informed by sociological and psychological theories of conflict and current best practice for conflict resolution. In this paper, we present a computational approach to conflict generation and resolution. We describe the five phases involved in our conflict modeling process: conflict situation creation, conflict detection, player modeling and conflict strategy prediction, conflict management, and conflict resolution, and discuss the three major elements of our player model: assertiveness, cooperativeness, and relationship. Finally, we overview a simple resource management game we have developed in which we have begun experimenting with our conflict model concepts.peer-reviewe
A computational approach towards conflict resolution for serious games
Conflict is an unavoidable feature of life, but the development of conflict resolution management skills can facilitate the parties involved in resolving their conflicts in a positive manner. The goal of our research is to develop a serious game in which children may experiment with conflict resolution strategies and learn how to work towards positive conflict outcomes. While serious games related to conflict exist at present, our work represents the first attempt to teach conflict resolution skills through a game in a manner informed by sociological and psychological theories of conflict and current best practice for conflict resolution. In this paper, we present a computational approach to conflict generation and resolution. We describe the five phases involved in our conflict modeling process: conflict situation creation, conflict detection, player modeling and conflict strategy prediction, conflict management, and conflict resolution, and discuss the three major elements of our player model: assertiveness, cooperativeness, and relationship. Finally, we overview a simple resource management game we have developed in which we have begun experimenting with our conflict model concepts.peer-reviewe
Breakthrough SARS-CoV-2 infections in MS patients on disease-modifying therapies
Background: Patients with multiple sclerosis (pwMS) treated with anti-CD20 or fingolimod showed a reduced humoral response to SARS-CoV-2 vaccines. Objective: In this study we aimed to monitor the risk of breakthrough SARS-CoV-2 infection in pwMS on different disease-modifying therapies (DMTs). Methods: Data on the number of vaccinated patients and the number of patients with a breakthrough infection were retrospectively collected in 27 Italian MS centers. We estimated the rate of breakthrough infections and of infection requiring hospitalization per DMT. Results: 19,641 vaccinated pwMS were included in the database. After a median follow-up of 8 months, we observed 137 breakthrough infections. Compared with other DMTs, the rate of breakthrough infections was significantly higher on ocrelizumab (0.57% vs 2.00%, risk ratio (RR) = 3.55, 95% CI = 2.74-4.58, p < 0.001) and fingolimod (0.58% vs 1.62%, RR = 2.65, 95% CI = 1.75-4.00, p < 0.001), while there were no significant differences in any other DMT group. In the ocrelizumab group the hospitalization rate was 16.7% versus 19.4% in the pre-vaccination era (RR = 0.86, p = 0.74) and it was 3.9% in all the other DMT groups versus 11.9% in the pre-vaccination period (RR = 0.33, p = 0.02). Conclusions: The risk of breakthrough SARS-CoV-2 infections is higher in patients treated with ocrelizumab and fingolimod, and the rate of severe infections was significantly reduced in all the DMTs excluding ocrelizumab
Hyaluronan Export through Plasma Membranes Depends on Concurrent K+ Efflux by Kir Channels
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+ channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K+ efflux
Antibody response elicited by the SARS-CoV-2 vaccine booster in patients with multiple sclerosis: Who gains from it?
Background and purpose: Although two doses of COVID-19 vaccine elicited a protective humoral response in most persons with multiple sclerosis (pwMS), a significant group of them treated with immunosuppressive disease-modifying therapies (DMTs) showed less efficient responses. Methods: This prospective multicenter observational study evaluates differences in immune response after a third vaccine dose in pwMS. Results: Four hundred seventy-three pwMS were analyzed. Compared to untreated patients, there was a 50-fold decrease (95% confidence interval [CI] = 14.3–100.0, p < 0.001) in serum SARS-CoV-2 antibody levels in those on rituximab, a 20-fold decrease (95% CI = 8.3–50.0, p < 0.001) in those on ocrelizumab, and a 2.3-fold decrease (95% CI = 1.2–4.6, p = 0.015) in those on fingolimod. As compared to the antibody levels after the second vaccine dose, patients on the anti-CD20 drugs rituximab and ocrelizumab showed a 2.3-fold lower gain (95% CI = 1.4–3.8, p = 0.001), whereas those on fingolimod showed a 1.7-fold higher gain (95% CI = 1.1–2.7, p = 0.012), compared to patients treated with other DMTs. Conclusions: All pwMS increased their serum SARS-CoV-2 antibody levels after the third vaccine dose. The mean antibody values of patients treated with ocrelizumab/rituximab remained well below the empirical "protective threshold" for risk of infection identified in the CovaXiMS study (>659 binding antibody units/mL), whereas for patients treated with fingolimod this value was significantly closer to the cutoff
Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
© 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
- …