612 research outputs found

    Lack of PAH emission toward low-mass embedded young stellar objects

    Get PDF
    PAHs have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-IR spectroscopic survey of PAH features toward a sample of low-mass embedded YSOs. The aim is to put constraints on the PAH abundance in the embedded phase of star formation using radiative transfer modeling. VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53 sources are presented. Line intensities are compared to recent surveys of Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL are used to model the PAH emission from embedded YSOs consisting of a PMS star with a circumstellar disk embedded in an envelope. The dependence of the PAH feature on PAH abundance, stellar radiation field, inclination and the extinction by the surrounding envelope is studied. The 3.3 micron PAH feature is undetected for the majority of the sample (97%), with typical upper limits of 5E-16 W/m^2. Compact 11.2 micron PAH emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra, for a source that is borderline embedded. For all 12 sources with both VLT and Spitzer spectra, no PAH features are detected in either. In total, PAH features are detected toward at most 1 out of 63 (candidate) embedded protostars (<~ 2%), even lower than observed for class II T Tauri stars with disks (11-14%). Assuming typical class I stellar and envelope parameters, the absence of PAHs emission is most likely explained by the absence of emitting carriers through a PAH abundance at least an order of magnitude lower than in molecular clouds but similar to that found in disks. Thus, most PAHs likely enter the protoplanetary disks frozen out in icy layers on dust grains and/or in coagulated form.Comment: 13 pages, 9 figures, accepted for publication in A&

    A New Raytracer for Modeling AU-Scale Imaging of Lines from Protoplanetary Disks

    Get PDF
    The material that formed the present-day solar system originated in feeding zones in the inner solar nebula located at distances within ~20 AU from the Sun, known as the planet-forming zone. Meteoritic and cometary material contain abundant evidence for the presence of a rich and active chemistry in the planet-forming zone during the gas-rich phase of solar system formation. It is a natural conjecture that analogs can be found among the zoo of protoplanetary disks around nearby young stars. The study of the chemistry and dynamics of planet formation requires: (1) tracers of dense gas at 100-1000 K and (2) imaging capabilities of such tracers with 5-100 mas (0.5-20 AU) resolution, corresponding to the planet-forming zone at the distance of the closest star-forming regions. Recognizing that the rich infrared (2-200 μm) molecular spectrum recently discovered to be common in protoplanetary disks represents such a tracer, we present a new general ray-tracing code, RADLite, that is optimized for producing infrared line spectra and images from axisymmetric structures. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. Such radiative transfer tools will be crucial for constraining both the structure and chemistry of planet-forming regions, including data from current infrared imaging spectrometers and extending to the Atacama Large Millimeter Array and the next generation of Extremely Large Telescopes, the James Webb Space Telescope and beyond

    Adaptation to altered interaural time differences in a virtual reality environment

    Get PDF
    Interaural time differences (ITDs) are important cues for determining the azimuth location of a sound source and need to be accurately reproduced, in a virtual reality (VR) environment, to achieve a realistic sense of sound location for the listener. ITDs are usually included in head related transfer functions (HRTFs) used for audio rendering, and can be individualised to match the user’s head size (e.g. longer ITDs are needed for larger head sizes). In recent years, studies have shown that it is possible to train subjects to adapt and improve their performance in sound localisation skills to non-individualized HRTFs. The analysis of such improvements has focused mainly on adaptation to monoaural spectral cues rather than binaural cues such as ITDs. In this work listeners are placed in a VR environment and are asked to localise the source of a noise burst in the horizontal plane. Using a generic non-individualized HRTF with its ITD modified to match the head size of each participant, test and training phases are alternated, with the latter providing continuous auditory feedback. The experiment is then repeated with ITDs simulating larger (150%) and smaller (50%) head sizes. Comparing localisation accuracy before and after training, it is observed that while training seems to improve sound localisation performance, this varies according to the simulated head size and target location

    Modeling Spitzer observations of VV Ser. I. The circumstellar disk of a UX Orionis star

    Get PDF
    We present mid-infrared Spitzer-IRS spectra of the well-known UX Orionis star VV Ser. We combine the Spitzer data with interferometric and spectroscopic data from the literature covering UV to submillimeter wavelengths. The full set of data are modeled by a two-dimensional axisymmetric Monte Carlo radiative transfer code. The model is used to test the prediction of (Dullemond et al. 2003) that disks around UX Orionis stars must have a self-shadowed shape, and that these disks are seen nearly edge-on, looking just over the edge of a puffed-up inner rim, formed roughly at the dust sublimation radius. We find that a single, relatively simple model is consistent with all the available observational constraints spanning 4 orders of magnitude in wavelength and spatial scales, providing strong support for this interpretation of UX Orionis stars. The grains in the upper layers of the puffed-up inner rim must be small (0.01-0.4 micron) to reproduce the colors (R_V ~ 3.6) of the extinction events, while the shape and strength of the mid-infrared silicate emission features indicate that grains in the outer disk (> 1-2 AU) are somewhat larger (0.3-3.0 micron). From the model fit, the location of the puffed-up inner rim is estimated to be at a dust temperature of 1500 K or at 0.7-0.8 AU for small grains. This is almost twice the rim radius estimated from near-infrared interferometry. A best fitting model for the inner rim in which large grains in the disk mid-plane reach to within 0.25 AU of the star, while small grains in the disk surface create a puffed-up inner rim at ~0.7-0.8 AU, is able to reproduce all the data, including the near-infrared visibilities. [Abstract abridged]Comment: 12 pages, accepted for publication in Ap

    Testing particle trapping in transition disks with ALMA

    Get PDF
    We present new Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at 336GHz of two transition disks, SR21 and HD135344B. In combination with previous ALMA observations from Cycle 0 at 689GHz, we compare the visibility profiles at the two frequencies and calculate the spectral index (αmm\alpha_{\rm{mm}}). The observations of SR21 show a clear shift in the visibility nulls, indicating radial variations of the inner edge of the cavity at the two wavelengths. Notable radial variations of the spectral index are also detected for SR21 with values of αmm3.84.2\alpha_{\rm{mm}}{\sim}3.8-4.2 in the inner region (r<35r<35 AU) and αmm2.63.0\alpha_{\rm{mm}}{\sim}2.6-3.0 outside. An axisymmetric ring (which we call the ring model) or a ring with the addition of an azimuthal Gaussian profile, for mimicking a vortex structure (which we call the vortex model), is assumed for fitting the disk morphology. For SR21, the ring model better fits the emission at 336GHz, conversely the vortex model better fits the 689GHz emission. For HD135344B, neither a significant shift in the null of the visibilities nor radial variations of αmm\alpha_{\rm{mm}} are detected. Furthermore, for HD135344B, the vortex model fits both frequencies better than the ring model. However, the azimuthal extent of the vortex increases with wavelength, contrary to model predictions for particle trapping by anticyclonic vortices. For both disks, the azimuthal variations of αmm\alpha_{\rm{mm}} remain uncertain to confirm azimuthal trapping. The comparison of the current data with a generic model of dust evolution that includes planet-disk interaction suggests that particles in the outer disk of SR21 have grown to millimetre sizes and have accumulated in a radial pressure bump, whereas with the current resolution there is not clear evidence of radial trapping in HD135344B, although it cannot be excluded either.Comment: Minor changes after language edition. Accepted for publication in A&A (abstract slightly shortened for arXiv

    Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    Get PDF
    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue of the Astrophysical Journa

    Projection of circumstellar disks on their environments

    Get PDF
    We use a 3D Monte Carlo radiative transfer code to study the projection of large shadows by circumstellar disks around young stellar objects on surrounding reflection nebulosity. It is shown that for a wide range of parameters a small (10-100 AU) circumstellar disk can project a large (1 000-10 000 AU) dark band in the near-infrared that often resembles a massive edge-on disk. The disk shadows are divided into two basic types, depending on the distribution of the reflecting material and the resulting morphology of the shadows in the near-infrared. Two YSOs associated with bipolar nebulosity, CK 3/EC 82 illuminating the Serpens Reflection Nebula (SRN) and Ced 110 IRS 4 in the Chamaeleon I molecular cloud, are modelled in detail as disk shadows. Spectral energy distributions of the two sources are collected using both archival ISO data and new Spitzer-IRS data. An axisymmetric model consisting of a small disk and a spherically symmetric envelope can reproduce the near-infrared images and full spectral energy distributions of the two disk shadow candidates. It is shown that the model fits can be used to constrain the geometry of the central disks due to the magnifying effect of the projection. We find that a disk unresolved in near-infrared images, but casting a large disk shadow, can be modelled at a level of sophistication approaching that of an edge-on disk with resolved near-infrared images. It is found that the most obvious observable difference between a disk shadow and a large optically thick disk is that the disk shadows have a compact near-infrared source near the center of the dark band. High resolution imaging and/or polarimetry should reveal the compact source in the center of a disk shadow as an edge-on disk. [Abstract abridged]Comment: 16 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    LkHα\alpha 330: Evidence for dust clearing through resolved submillimeter imaging

    Get PDF
    Mid-infrared spectrophotometric observations have revealed a small sub-class of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model dependent method of finding central holes. We present here the direct characterization of a 40 AU radius inner gap in the disk around LkHa 330 through 340 GHz (880 micron) dust continuum imaging with the Submillimeter Array (SMA). This large gap is fully resolved by the SMA observations and mostly empty of dust with less than 1.3 x 10^-6 M_solar of solid particles inside of 40 AU. Gas (as traced by accretion markers and CO M-band emission) is still present in the inner disk and the outer edge of the gap rises steeply -- features in better agreement with the underlying cause being gravitational perturbation than a more gradual process such as grain growth. Importantly, the good agreement of the spatially resolved data and spectrophometry-based model lends confidence to current interpretations of SEDs with significant dust emission deficits as arising from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.Comment: 11 pages, 3 figures, accepted to ApJ

    Protostellar holes: Spitzer Space Telescope observations of the protostellar binary IRAS16293-2422

    Full text link
    Mid-infrared (23-35 micron) emission from the deeply embedded "Class 0" protostar IRAS16293-2422 is detected with the Spitzer Space Telescope infrared spectrograph. A detailed radiative transfer model reproducing the full spectral energy distribution (SED) from 23 micron to 1.3 mm requires a large inner cavity of radius 600 AU in the envelope to avoid quenching the emission from the central sources. This is consistent with a previous suggestion based on high angular resolution millimeter interferometric data. An alternative interpretation using a 2D model of the envelope with an outflow cavity can reproduce the SED but not the interferometer visibilities. The cavity size is comparable to the centrifugal radius of the envelope and therefore appears to be a natural consequence of the rotation of the protostellar core, which has also caused the fragmentation leading to the central protostellar binary. With a large cavity such as required by the data, the average temperature at a given radius does not increase above 60-80 K and although hot spots with higher temperatures may be present close to each protostar, these constitute a small fraction of the material in the inner envelope. The proposed cavity will also have consequences for the interpretation of molecular line data, especially of complex species probing high temperatures in the inner regions of the envelope.Comment: Accepted for publication in ApJ Letter

    Evolution of dust and ice features around FU Orionis objects

    Get PDF
    (abridged) We present spectroscopy data for a sample of 14 FUors and 2 TTauri stars observed with the Spitzer Space Telescope or with the Infrared Space Observatory (ISO). Based on the appearance of the 10 micron silicate feature we define 2 categories of FUors. Objects showing the silicate feature in absorption (Category 1) are still embedded in a dusty and icy envelope. The shape of the 10 micron silicate absorption bands is compared to typical dust compositions of the interstellar medium and found to be in general agreement. Only one object (RNO 1B) appears to be too rich in amorphous pyroxene dust, but a superposed emission feature can explain the observed shape. We derive optical depths and extinction values from the silicate band and additional ice bands at 6.0, 6.8 and 15.2 micron. In particular the analysis of the CO_2 ice band at 15.2 micron allows us to search for evidence for ice processing and constrains whether the absorbing material is physically linked to the central object or in the foreground. For objects showing the silicate feature in emission (Category 2), we argue that the emission comes from the surface layer of accretion disks. Analyzing the dust composition reveals that significant grain growth has already taken place within the accretion disks, but no clear indications for crystallization are present. We discuss how these observational results can be explained in the picture of a young, and highly active accretion disk. Finally, a framework is proposed as to how the two categories of FUors can be understood in a general paradigm of the evolution of young, low-mass stars. Only one object (Parsamian 21) shows PAH emission features. Their shapes, however, are often seen toward evolved stars and we question the object's status as a FUor and discuss other possible classifications.Comment: accepted for publication in ApJ; 63 pages preprint style including 8 tables and 24 figure
    corecore