202 research outputs found

    The effect of heavy element opacity on pre-main sequence Li depletion

    Get PDF
    Recent 3-D analysis of the solar spectrum data suggests a significant change of the solar chemical composition. This may affect the temporal evolution of the surface abundance of light elements since the extension of the convective envelope is largely affected by the internal opacity value. We analyse the influence of the adopted solar mixture on the opacity in the convective envelope of pre-main sequence (PMS) stars and thus on PMS lithium depletion. The surface Li abundance depends on the relative efficiency of several processes, some of them still not known with the required precision; this paper thus analyses one of the aspects of this ``puzzle''. Focusing on PMS evolution, where the largest amount of Li burning occurs, we computed stellar models for three selected masses (0.8, 1.0 and 1.2 Msun, with Z=0.013, Y=0.27, alpha=1.9) by varying the chemical mixture, that is the internal element distribution in Z. We analysed the contribution of the single elements to the opacity at the temperatures and densities of interest for Li depletion. Several mixtures were obtained by varying the abundance of the most important elements one at a time; we then calculated the corresponding PMS Li abundance evolution. We found that a mixture variation does change the Li abundance: at fixed total metallicity, the Li depletion increases when increasing the fraction of elements heavier than O.Comment: A&A accepted, 11 pages, 18 eps figure

    Lithium evolution in intermediate age and old open clusters: NGC 752 revisited

    Full text link
    We present new high resolution spectroscopic observations of the intermediate age (~2 Gyr) open cluster NGC 752. We investigate the Li vs. Teff distribution and we obtain a new accurate determination of the cluster metallicity. We compare the results for NGC 752 with other intermediate age and old clusters spanning the age range from the Hyades (~0.6 Gyr) to NGC 188 (~6-8 Gyr). We find that NGC 752 has a solar iron content ([Fe/H]=+0.01+/-0.04), at variance with early reports of sub-solar metallicity. We find that NGC 752 is only slightly more Li depleted than the younger Hyades and has a Li pattern almost identical to that observed in the ~2 Gyr old IC 4651 and NGC 3680. As for the latter clusters, we find that NGC 752 is characterized by a tight Li vs. Teff distribution for solar-type stars, with no evidence for a Li spread as large as the one observed in the solar age solar metallicity M 67. We discuss these results in the framework of mixing mechanisms and Li depletion on the main sequence (MS). We conclude that the development of a large scatter in Li abundances in old open clusters might be an exception rather than the rule (additional observations of old clusters are required), and that metallicity variations of the order of ~0.2 dex do not affect Li depletion after the age of the Hyades.Comment: A&A accepted, 10 pages, 5 ps figure

    Two distinct halo populations in the solar neighborhood. IV. Lithium abundances

    Full text link
    We investigate if there is a difference in the lithium abundances of stars belonging to two halo populations of F and G main-sequence stars previously found to differ in [alpha/Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. Li abundances are derived from the LiI 6707.8 A line measured in high-resolution spectra using MARCS model atmospheres. Furthermore, masses of the stars are determined from the logTeff - logg diagram by interpolating between Yonsei-Yale evolutionary tracks. There is no significant systematic difference in the lithium abundances of high- and low-alpha halo stars. For the large majority of stars with masses 0.7 < M/M_sun < 0.9 and heavy-element mass fractions 0.001 < Z < 0.006, the Li abundance is well fitted by a relation A(Li) = a0 + a1 M + a2 Z + a3 M Z, where a0, a1, a2, and a3 are constants. Extrapolating this relation to Z = 0 leads to a Li abundance close to the primordial value predicted from standard Big Bang nucleosynthesis calculations and the WMAP baryon density. The relation, however, does not apply to stars with [Fe/H] < -1.5. We suggest that metal-rich halo stars were formed with a Li abundance close to the primordial value, and that lithium in their atmospheres has been depleted in time with an approximately linear dependence on stellar mass and Z. The lack of a systematic difference in the Li abundances of high- and low-alpha stars indicates that an environmental effect is not important for the destruction of lithium.Comment: 10 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Evolution of lithium beyond the solar age: a Li survey of the old open cluster NGC 188

    Get PDF
    We have determined Li abundances for 11 G-type stars in the 6-8 Gyr old open cluster NGC 188. These data significantly enlarge the number of cluster stars with Li measurements, allowing us to extend the investigation of Li depletion in open clusters to ages well beyond the age of the Sun. We have also inferred the cluster metallicity which turns out to be solar. We find that solar-type stars in NGC 188 are only slightly more Li depleted than the much younger Hyades and no more Li depleted than stars of similar temperature in the 2-4 Gyr younger cluster M 67. At variance with M 67, NGC 188 members show virtually no scatter in their Li abundances. Surprisingly, no solar- type star in NGC 188 appears as Li depleted as the Sun or as the most Li depleted stars in M 67. We discuss the implications of these results for mechanisms of internal mixing and Li depletion in main sequence stars.Comment: to appear in A&

    Impact of rotation and disc lifetime on pre-main sequence lithium depletion of solar-type stars

    Full text link
    Aims: We study the influence of rotation and disc lifetime on lithium depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of rotational mixing and of the hydrostatic effects of rotation on lithium abundances are investigated by computing non-rotating and rotating PMS models that include a comprehensive treatment of shellular rotation. The influence of the disc lifetime is then studied by comparing the lithium content of PMS rotating models experiencing different durations of the disc-locking phase between 3 and 9 Myr. Results: The surface lithium abundance at the end of the PMS is decreased when rotational effects are included. During the beginning of the lithium depletion phase, only hydrostatic effects of rotation are at work. This results in a decrease in the lithium depletion rate for rotating models compared to non-rotating ones. When the convective envelope recedes from the stellar centre, rotational mixing begins to play an important role due to differential rotation near the bottom of the convective envelope. This mixing results in a decrease in the surface lithium abundance with a limited contribution from hydrostatic effects of rotation, which favours lithium depletion during the second part of the PMS evolution. The impact of rotation on PMS lithium depletion is also found to be sensitive to the duration of the disc-locking phase. When the disc lifetime increases, the PMS lithium abundance of a solar-type star decreases owing to the higher efficiency of rotational mixing in the radiative zone. A relationship between the surface rotation and lithium abundance at the end of the PMS is then obtained: slow rotators on the zero-age main sequence are predicted to be more lithium-depleted than fast rotators due to the increase in the disc lifetime.Comment: 8 pages, 11 figures, A&

    Taxonomy of Iberian Hoplia (Col., Scarabaeoidea, Hopliinae) based on mtDNA analysis

    Get PDF
    Abstract The morphology of some Hoplia species (Scarabaeoidea: Hopliinae) is so variable that parapatric populations have often been considered different species or subspecies. In this study we analyze the nucleotide sequences of a fragment of mitochondrial gene cytochrome c oxidase subunit I (COI) of six species and two subspecies of Palaearctic Hoplia to reexamine the species limits. Based on the analysis of sequences from COI and morphological and ecological observations, we consider Hoplia freyi Baraud to be a junior synonym of Hoplia chlorophana Erichson and H. philanthus ramburi Heyden to be a junior synonym of H. philanthus philanthus (Fuessly). However, complete resolution of relationships among H. philanthus subspecies requires the addition of sequences from genes evolving faster than COI. Phylogenetic relationships among the species studied are discussed

    Modelling fully convective stars in eclipsing binaries: KOI-126 and CM Draconis

    Full text link
    We present models of the components of the systems KOI-126 and CM Draconis, the two eclipsing binary systems known to date to contain stars with masses low enough to have fully convective interiors. We are able to model satisfactorily the system KOI-126, finding consistent solutions for the radii and surface temperatures of all three components, using a solar-like value of the mixing-length parameter \alpha in the convection zone, and PHOENIX NextGen 1D model atmospheres for the surface boundary conditions. Depending on the chemical composition, we estimate the age of the system to be in the range 3-5 Gyr. For CM Draconis, on the other hand, we cannot reconcile our models with the observed radii and T_eff using the current metal-poor composition estimate based on kinematics. Higher metallicities lessen but do not remove the discrepancy. We then explore the effect of varying the mixing length parameter \alpha. As previously noted in the literature, a reduced \alpha can be used as a simple measure of the lower convective efficiency due to rotation and induced magnetic fields. Our models show a sensitivity to \alpha (for \alpha < 1.0) sufficient to partially account for the radius discrepancies. It is, however, impossible to reconcile the models with the observations on the basis of the effect of the reduced \alpha alone. We therefore suggest that the combined effects of high metallicity and \alpha reduction could explain the observations of CM Draconis. For example, increasing the metallicity of the system towards super-solar values (i.e. Z = 2 Z_sun) yields an agreement within 2 \sigma with \alpha = 1.0.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    Seismic and dynamical solar models i-the impact of the solar rotation history on neutrinos and seismic indicators

    Full text link
    Solar activity and helioseismology show the limitation of the standard solar model and call for the inclusion of dynamical processes in both convective and radiative zones. We concentrate here on the radiative zone and first show the sensitivity of boron neutrinos to the microscopic physics included in solar models. We confront the neutrino predictions of the seismic model to all the detected neutrino fluxes. Then we compute new models of the Sun including a detailed transport of angular momentum and chemicals due to internal rotation that includes meridional circulation and shear induced turbulence. We use two stellar evolution codes: CESAM and STAREVOL to estimate the different terms. We follow three temporal evolutions of the internal rotation differing by their initial conditions: very slow, moderate and fast rotation, with magnetic braking at the arrival on the main sequence for the last two. We find that the meridional velocity in the present solar radiative zone is extremely small in comparison with those of the convective zone, smaller than 10^-6 cm/s instead of m/s. All models lead to a radial differential rotation profile but with a significantly different contrast. We compare these profiles to the presumed solar internal rotation and show that if meridional circulation and shear turbulence were the only mechanisms transporting angular momentum within the Sun, a rather slow rotation in the young Sun is favored. The transport by rotation slightly influence the sound speed profile but its potential impact on the chemicals in the transition region between radiation and convective zones. This work pushes us to pursue the inclusion of the other dynamical processes to better reproduce the present observable and to describe the young active Sun. We also need to get a better knowledge of solar gravity mode splittings to use their constraints.Comment: 39 pages, 9 figures, accepted in Astrophysical Journa
    corecore