49 research outputs found

    Targeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer

    Get PDF
    Using antibody/aptamer-drug conjugates can be a promising method for decreasing toxicity, while increasing the efficiency of chemotherapy.In this study, the antitumor agent Doxorubicin (Dox) was incorporated into the modified DNA aptamer TLS11a-GC, which specifically targets LH86, a human hepatocellular carcinoma cell line. Cell viability tests demonstrated that the TLS11a-GC-Dox conjugates exhibited both potency and target specificity. Importantly, intercalating Dox into the modified aptamer inhibited nonspecific uptake of membrane-permeable Dox to the non-target cell line. Since the conjugates are selective for cells that express higher amounts of target proteins, both criteria noted above are met, making TLS11a-GC-Dox conjugates potential candidates for targeted delivery to liver cancer cells.Considering the large number of available aptamers that have specific targets for a wide variety of cancer cells, this novel aptamer-drug intercalation method will have promising implications for chemotherapeutics in general

    DNA Aptamers as Molecular Probes for Colorectal Cancer Study

    Get PDF
    Understanding the molecular features of specific tumors can increase our knowledge about the mechanism(s) underlying disease development and progression. This is particularly significant for colorectal cancer, which is a heterogeneous complex of diseases developed in a sequential manner through a multistep carcinogenic process. As such, it is likely that tumors with similar characteristics might originate in the same manner and have a similar molecular behavior. Therefore, specific mapping of the molecular features can be potentially useful for both tumor classification and the development of appropriate therapeutic regimens. However, this can only be accomplished by developing high-affinity molecular probes with the ability to recognize specific markers associated with different tumors. Aptamers can most easily meet this challenge based on their target diversity, flexible manipulation and ease of development.Using a method known as cell-based Systematic Evolution of Ligands by Exponential enrichment (cell-SELEX) and colorectal cancer cultured cell lines DLD-1 and HCT 116, we selected a panel of target-specific aptamers. Binding studies by flow cytometry and confocal microscopy showed that these aptamers have high affinity and selectivity. Our data further show that these aptamers neither recognize normal colon cells (cultured and fresh), nor do they recognize most other cancer cell lines tested.The selected aptamers can identify specific biomarkers associated with colorectal cancers. We believe that these probes could be further developed for early disease detection, as well as prognostic markers, of colorectal cancers

    Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Get PDF
    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications

    Combined aptamer and transcriptome sequencing of single cells

    Get PDF
    Abstract The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing

    High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities

    No full text
    International audienceTranscription factors (TFs) control gene transcription, binding to specific DNA motifs located in cis-regulatory elements across the genome. The identification of TF-binding motifs is thus an important aspect to understand the role of TFs in gene regulation. SELEX, Systematic Evolution of Ligands by EXponential enrichment, is an efficient in vitro method, which can be used to determine the DNA-binding specificity of TFs. Thanks to the development of high-throughput (HT) DNA cloning system and protein production technology, the classical SELEX assay has be extended to high-throughput scale (HT-SELEX).We report here the detailed protocol for the cloning, production, and purification of 420 Ciona robusta DNA BD. 263 Ciona robusta TF DNA-binding domain proteins were purified in milligram quantities and analyzed by HT-SELEX. The identification of 139 recognition sequences generates an atlas of protein-DNA-binding specificities that is crucial for the understanding of the gene regulatory network (GRN) of Ciona robusta. Overall, our analysis suggests that the Ciona robusta repertoire of sequence-specific transcription factors comprises less than 500 genes. The protocols for high-throughput protein production and HT-SELEX described in this article for the study of Ciona robusta TF DNA-binding specificity are generic and have been successfully applied to a wide range of TFs from other species, including human, mouse, and Drosophila
    corecore