180 research outputs found

    An estimate of the chemical composition of Titan's lakes

    Full text link
    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument (HASI). Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered as nonideal solutions. We find that the main constituents of the lakes are ethane (C2H6) (~76-79%), propane (C3H8) (~7-8%), methane (CH4) (~5-10%), hydrogen cyanide (HCN) (~2-3%), butene (C4H8) (~1%), butane (C4H10) (~1%) and acetylene (C2H2) (~1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.Comment: 5 pages, 2 figures, accepted in ApJ

    Photochemical hazes in sub-Neptunian atmospheres with focus on GJ 1214 b

    Get PDF
    We study the properties of photochemical hazes in super-Earths/mini-Neptunes atmospheres with particular focus on GJ1214b. We evaluate photochemical haze properties at different metallicities between solar and 10000×\timessolar. Within the four orders of magnitude change in metallicity, we find that the haze precursor mass fluxes change only by a factor of ∼\sim3. This small diversity occurs with a non-monotonic manner among the different metallicity cases, reflecting the interaction of the main atmospheric gases with the radiation field. Comparison with relative haze yields at different metallicities from laboratory experiments reveals a qualitative similarity with our theoretical calculations and highlights the contributions of different gas precursors. Our haze simulations demonstrate that higher metallicity results into smaller average particle sizes. Metallicities at and above 100×\timessolar with haze formation yields of ∼\sim10%\% provide enough haze opacity to satisfy transit observation at visible wavelengths and obscure sufficiently the H2_2O molecular absorption features between 1.1 μ\mum and 1.7 μ\mum. However, only the highest metallicity case considered (10000×\timessolar) brings the simulated spectra into closer agreement with transit depths at 3.6 μ\mum and 4.5 μ\mum indicating a high contribution of CO/CO2_2 in GJ1214b's atmosphere. We also evaluate the impact of aggregate growth in our simulations, in contrast to spherical growth, and find that the two growth modes provide similar transit signatures (for Df_f=2), but with different particle size distributions. Finally, we conclude that the simulated haze particles should have major implications for the atmospheric thermal structure and for the properties of condensation clouds

    Titan's lakes chemical composition: sources of uncertainties and variability

    Full text link
    Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered hydrocarbon lakes in the polar regions of Titan. We have developed a lake-atmosphere equilibrium model allowing the determination of the chemical composition of these liquid areas. The model is based on uncertain thermodynamic data and precipitation rates of organic species predicted to be present in the lakes and seas that are subject to spatial and temporal variations. Here we explore and discuss the influence of these uncertainties and variations. The errors and uncertainties relevant to thermodynamic data are simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also employed in order to investigate the possibility of chemical asymmetry between the south and the north poles, due to differences in precipitation rates. We find that mole fractions of compounds in the liquid phase have a high sensitivity to thermodynamic data used as inputs, in particular molar volumes and enthalpies of vaporization. When we combine all considered uncertainties, the ranges of obtained mole fractions are rather large (up to ~8500%) but the distributions of values are narrow. The relative standard deviations remain between 10% and ~300% depending on the compound considered. Compared to other sources of uncertainties and variability, deviation caused by surface pressure variations are clearly negligible, remaining of the order of a few percent up to ~20%. Moreover no significant difference is found between the composition of lakes located in north and south poles. Because the theory of regular solutions employed here is sensitive to thermodynamic data and is not suitable for polar molecules such as HCN and CH3CN, our work strongly underlines the need for experimental simulations and the improvement of Titan's atmospheric models.Comment: Accepted in Planetary and Space Scienc

    EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR

    Get PDF
    Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titan year or 29.5 Earth years was completed in May 2010). In this study we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini CIRS data taken during the Titan flybys from 2006-2013 and compare them to the 1980 V1IRIS spectra (re-analyzed here). We also consider data from Earth-based and -orbiting observatories (such as from the ISO, re-visited). When we compare the CIRS 2010 and the IRIS data we find limited inter-annual variations, below the 25 or35 levels for the lower and middle, or the high latitudes, respectively. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50degN to 50degS, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by GCM and photochemical models. However, some exceptions exist among the most complex hydrocarbons (C4H2 and C3H4), especially in the North. In the Southern latitudes, since 2012, we see a trend for an increase of several trace gases, possibly indicative of a seasonal atmospheric reversal. At the Northern latitudes we found enhanced abundances around the period of the northern spring equinox in mid-2009 (as in Bampasidis et al. 2012), which subsequently decreased (from 2010-2012) returning to values similar to those found in the V1 epoch a Titanian year before

    The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere

    Get PDF
    The detections of atomic hydrogen, heavy atoms and ions surrounding the extrasolar giant planet (EGP) HD209458b constrain the composition, temperature and density profiles in its upper atmosphere. Thus the observations provide guidance for models that have so far predicted a range of possible conditions. We present the first hydrodynamic escape model for the upper atmosphere that includes all of the detected species in order to explain their presence at high altitudes, and to further constrain the temperature and velocity profiles. This model calculates the stellar heating rates based on recent estimates of photoelectron heating efficiencies, and includes the photochemistry of heavy atoms and ions in addition to hydrogen and helium. The composition at the lower boundary of the escape model is constrained by a full photochemical model of the lower atmosphere. We confirm that molecules dissociate near the 1 μbar level, and find that complex molecular chemistry does not need to be included above this level. We also confirm that diffusive separation of the detected species does not occur because the heavy atoms and ions collide frequently with the rapidly escaping H and H+. This means that the abundance of the heavy atoms and ions in the thermosphere simply depends on the elemental abundances and ionization rates. We show that, as expected, H and O remain mostly neutral up to at least 3Rp, whereas both C and Si are mostly ionized at significantly lower altitudes. We also explore the temperature and velocity profiles, and find that the outflow speed and the temperature gradients depend strongly on the assumed heating efficiencies. Our models predict an upper limit of 8000 K for the mean (pressure averaged) temperature below 3Rp, with a typical value of 7000 K based on the average solar XUV flux at 0.047 AU. We use these temperature limits and the observations to evaluate the role of stellar energy in heating the upper atmosphere

    The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations

    Get PDF
    Transits in the H I 1216 Å (Lyman α), O I 1334 Å, C II 1335 Å, and Si III 1206.5 Å lines constrain the properties of the upper atmosphere of HD209458b. In addition to probing the temperature and density profiles in the thermosphere, they have implications for the properties of the lower atmosphere. Fits to the observations with a simple empirical model and a direct comparison with a more complex hydrodynamic model constrain the mean temperature and ionization state of the atmosphere, and imply that the optical depth of the extended thermosphere of the planet in the atomic resonance lines is significant. In particular, it is sufficient to explain the observed transit depths in the H I 1216 Å line. The detection of O at high altitudes implies that the minimum mass loss rate from the planet is approximately 6 × 106 kg s−1. The mass loss rate based on our hydrodynamic model is higher than this and implies that diffusive separation is prevented for neutral species with a mass lower than about 130 amu by the escape of H. Heavy ions are transported to the upper atmosphere by Coulomb collisions with H+ and their presence does not provide as strong constraints on the mass loss rate as the detection of heavy neutral atoms. Models of the upper atmosphere with solar composition and heating based on the average solar X-ray and EUV flux agree broadly with the observations but tend to underestimate the transit depths in the O I, C II, and Si III lines. This suggests that the temperature and/or elemental abundances in the thermosphere may be higher than expected from such models. Observations of the escaping atmosphere can potentially be used to constrain the strength of the planetary magnetic field. We find that a magnetic moment of m ≲ 0.04mJ, where mJ is the jovian magnetic moment, allows the ions to escape globally rather than only along open field lines. The detection of Si2+ in the thermosphere indicates that clouds of forsterite and enstatite do not form in the lower atmosphere. This has implications for the temperature and dynamics of the atmosphere that also affect the interpretation of transit and secondary eclipse observations in the visible and infrared wavelengths

    Negative ion chemistry in Titan's upper atmosphere

    No full text
    International audienceThe Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (not, vert, similar1000 km) show evidence for negatively charged ions up to not, vert, similar10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN−, C3N−/C4H− and C5N−. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes
    • …
    corecore