23 research outputs found

    Broadband spectroscopy of astrophysical ice analogues: II. Optical constants of CO and CO2_2 ices in the terahertz and infrared ranges

    Full text link
    Context: Broadband optical constants of astrophysical ice analogues in the infrared (IR) and terahertz (THz) ranges are required for modeling the dust continuum emission and radiative transfer in dense and cold regions, where thick icy mantles are formed on the surface of dust grains. Aims: In this paper, the THz time-domain spectroscopy (TDS) and the Fourier-transform IR spectroscopy (FTIR) are combined to study optical constants of CO and CO2_2 ices in the broad THz-IR spectral range. Methods: The measured ices are grown at cryogenic temperatures by gas deposition on a cold Si window. A method to quantify the broadband THz-IR optical constants of ices is developed based on the direct reconstruction of the complex refractive index of ices in the THz range from the TDS data, and the use of the Kramers-Kronig relation in the IR range for the reconstruction from the FTIR data. Uncertainties of the Kramers-Kronig relation are eliminated by merging the THz and IR spectra. The reconstructed THz-IR response is then analyzed using classical models of complex dielectric permittivity. Results: The complex refractive index of CO and CO2_2 ices deposited at the temperature of 2828 K is obtained in the range of 0.3--12.0 THz. Based on the measured dielectric constants, opacities of the astrophysical dust with CO and CO2_2 icy mantles are computed. Conclusions: The developed method can be used for a model-independent reconstruction of optical constants of various astrophysical ice analogs in a broad THz-IR range. Such data can provide important benchmarks to interpret the broadband observations from the existing and future ground-based facilities and space telescopes. The reported results will be useful to model sources that show a drastic molecular freeze-out, such as central regions of prestellar cores and mid-planes of protoplanetary disks, as well as CO and CO2_2 snow lines in disks.Comment: Accepted for publication in A&A, 9 pages, 7 figure

    A global network for operational flood risk reduction

    Get PDF
    Every year riverine flooding affects millions of people in developing countries, due to the large population exposure in the floodplains and the lack of adequate flood protection measures. Preparedness and monitoring are effective ways to reduce flood risk. State-of-the-art technologies relying on satellite remote sensing as well as numerical hydrological and weather predictions can detect and monitor severe flood events at a global scale. This paper describes the emerging role of the Global Flood Partnership (GFP), a global network of scientists, users, private and public organizations active in global flood risk management. Currently, a number of GFP member institutes regularly share results from their experimental products, developed to predict and monitor where and when flooding is taking place in near real-time. GFP flood products have already been used on several occasions by national environmental agencies and humanitarian organizations to support emergency operations and to reduce the overall socio-economic impacts of disasters. This paper describes a range of global flood products developed by GFP partners, and how these provide complementary information to support and improve current global flood risk management for large scale catastrophes. We also discuss existing challenges and ways forward to turn current experimental products into an integrated flood risk management platform to improve rapid access to flood information and increase resilience to flood events at global scale

    Ammonia snow lines and ammonium salts desorption

    No full text
    International audienceContext. The nitrogen reservoir in planetary systems is a long-standing problem. Some of the N-bearing molecules are probably incorporated into the ice bulk during the cold phases of the stellar evolution, and may be gradually released into the gas phase when the ice is heated, for example in active comets. The chemical nature of the N-reservoir should greatly influence how, when, and in what form N returns to the gas phase, or is incorporated into the refractory material forming planetary bodies. Aims. We present the study of the thermal desorption of two ammonium salts, ammonium formate and ammonium acetate, from a gold surface and from a water ice substrate. Methods. Temperature-programmed desorption experiments and Fourier transform infrared reflection spectroscopy were conducted to investigate the desorption behavior of ammonium salts. Results. Ammonium salts are semi-volatile species releasing neutral species as major components upon desorption, namely ammonia and the corresponding organic acid (HCOOH and CH 3 COOH), at temperatures higher than the temperature of thermal desorption of water ice. Their desorption follows a first-order Wigner-Polanyi law. We find the first-order kinetic parameters A = 7.7 ± 0.6 × 10 15 s −1 and E bind = 68.9 ± 0.1 kJ mol −1 for ammonium formate and A = 3.0 ± 0.4 × 10 20 s −1 and E bind = 83.0 ± 0.2 kJ mol −1 for ammonium acetate. The presence of a water ice substrate does not influence the desorption kinetics. Ammonia molecules locked in salts desorb as neutral molecules at temperatures much higher than previously expected, and that are usually attributed to refractory materials. Conclusions. The ammonia snow line has a smaller radius than the water snow line. As a result, the NH 3 /H 2 O ratio content in Solar System bodies can be a hint to where they formed and subsequently migrated

    Ammonia snow lines and ammonium salts desorption

    No full text
    Context. The nitrogen reservoir in planetary systems is a long-standing problem. Some of the N-bearing molecules are probably incorporated into the ice bulk during the cold phases of the stellar evolution, and may be gradually released into the gas phase when the ice is heated, for example in active comets. The chemical nature of the N-reservoir should greatly influence how, when, and in what form N returns to the gas phase, or is incorporated into the refractory material forming planetary bodies. Aims. We present the study of the thermal desorption of two ammonium salts, ammonium formate and ammonium acetate, from a gold surface and from a water ice substrate. Methods. Temperature-programmed desorption experiments and Fourier transform infrared reflection spectroscopy were conducted to investigate the desorption behavior of ammonium salts. Results. Ammonium salts are semi-volatile species releasing neutral species as major components upon desorption, namely ammonia and the corresponding organic acid (HCOOH and CH3COOH), at temperatures higher than the temperature of thermal desorption of water ice. Their desorption follows a first-order Wigner-Polanyi law. We find the first-order kinetic parameters A = 7.7 ± 0.6 × 1015 s−1 and Ebind = 68.9 ± 0.1 kJ mol−1 for ammonium formate and A = 3.0 ± 0.4 × 1020 s−1 and Ebind = 83.0 ± 0.2 kJ mol−1 for ammonium acetate. The presence of a water ice substrate does not influence the desorption kinetics. Ammonia molecules locked in salts desorb as neutral molecules at temperatures much higher than previously expected, and that are usually attributed to refractory materials. Conclusions. The ammonia snow line has a smaller radius than the water snow line. As a result, the NH3/H2O ratio content in Solar System bodies can be a hint to where they formed and subsequently migrated

    Physically motivated X-ray obscurer models

    No full text
    Context. The nuclear obscurer of active galactic nuclei (AGN) is poorly understood in terms of its origin, geometry, and dynamics. Aims. We investigate whether physically motivated geometries emerging from hydro-radiative simulations can be differentiated with X-ray reflection spectroscopy. Methods. For two new geometries, the radiative fountain model and a warped disk, we release spectral models produced with the ray tracing code XARS. We contrast these models with spectra of three nearby AGN taken by NuSTAR and Swift/BAT. Results. Along heavily obscured sightlines, the models present different 4−20 keV continuum spectra. These can be differentiated by current observations. Spectral fits of the Circinus Galaxy favour the warped disk model over the radiative fountain, and clumpy or smooth torus models. Conclusions. The necessary reflector (NH ≄ 1025 cm2) suggests a hidden population of heavily Compton-thick AGN amongst local galaxies. X-ray reflection spectroscopy is a promising pathway to understand the nuclear obscurer in AGN

    Broadband spectroscopy of astrophysical ice analogues. II. Optical constants of CO and CO<SUB>2</SUB> ices in the terahertz and infrared ranges

    No full text
    International audienceContext. Broadband optical constants of astrophysical ice analogues in the infrared (IR) and terahertz (THz) ranges are required for modeling the dust continuum emission and radiative transfer in dense and cold regions, where thick icy mantles are formed on the surface of dust grains. Such data are still missing from the literature, which can be attributed to the lack of appropriate spectroscopic systems and methods for laboratory studies. Aims: In this paper, the THz time-domain spectroscopy (TDS) and the Fourier-transform IR spectroscopy (FTIR) are combined to study optical constants of CO and CO2 ices in the broad THz-IR spectral range. Methods: The measured ices were grown at cryogenic temperatures by gas deposition on a cold silicon window. We developed a method to quantify the broadband THz-IR optical constants of ices, based on the direct reconstruction of the complex refractive index of ices in the THz range from the TDS data and the use of the Kramers-Kronig relation in the IR range for the reconstruction from the FTIR data. Uncertainties introduced by the Kramers-Kronig relations were eliminated by merging the THz and IR spectra. Finally, the reconstructed THz-IR response was analyzed using classical models of complex dielectric permittivity. Results: The complex refractive index of CO and CO2 ices deposited at the temperature of 28 K was obtained in the range of 0.312.0 THz and fitted using the analytical Lorentz model. Based on the measured dielectric constants, opacities of the astrophysical dust with CO and CO2 icy mantles were computed. Conclusions: The method developed in this work can be used for a model-independent reconstructions of optical constants of various astrophysical ice analogs in a broad THz-IR range. Such data can provide important benchmarks for interpreting broadband observations from existing and future ground-based facilities and space telescopes. The reported results will be useful in modeling sources that exhibit a drastic molecular freeze-out, such as the central regions of prestellar cores and mid-planes of protoplanetary disks, as well as CO and CO2 snow lines in disks

    The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies.

    No full text
    For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/
    corecore