6,194 research outputs found
(1173) Anchises - Thermophysical and Dynamical Studies of a Dynamically Unstable Jovian Trojan
We have performed detailed thermophysical and dynamical modelling of Jovian
Trojan (1173) Anchises. Our results reveal a most unusual object. By examining
observational data taken by IRAS, Akari and WISE between 11.5 and 60 microns,
along with variations in its optical lightcurve, we find Anchises is most
likely an elongated body, with an axes-ratio of ~1.4. This yields calculated
best-fit dimensions of 170x121x121km (an equivalent diameter of 136+18/-11km).
We find the observations are best fit by Anchises having a retrograde sense of
rotation, and an unusually high thermal inertia (25 to 100 Jm-2s-0.5K-1). The
geometric albedo is found to be 0.027 (+0.006/-0.007). Anchises therefore has
one of the highest published thermal inertias of any object larger than 100km
in diameter, at such large heliocentric distances, and is one of the lowest
albedo objects ever observed. More observations are needed to see if there is a
link between the very shallow phase curve, with almost no opposition effect,
and the derived thermal properties for this large Trojan asteroid. Our
dynamical investigation of Anchises' orbit has revealed it to be dynamically
unstable on timescales of hundreds of Myr, similar to the unstable Neptunian
Trojans 2001 QR322 and 2008 LC18. Unlike those objects, we find that Anchises'
dynamical stability is not a function of its initial orbital elements, the
result of the exceptional precision with which its orbit is known. This is the
first time that a Jovian Trojan has been shown to be dynamically unstable, and
adds weight to the idea that planetary Trojans represent a significant ongoing
contribution to the Centaur population, the parents of the short-period comets.
The observed instability does not rule out a primordial origin for Anchises,
but when taken in concert with the result of our thermophysical analysis,
suggest that it would be a fascinating target for future study.Comment: 5 figures, 3 tables, accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Planetary Trojans - the main source of short period comets?
We present a short review of the impact regime experienced by the terrestrial
planets within our own Solar system, describing the three populations of
potentially hazardous objects which move on orbits that take them through the
inner Solar system. Of these populations, the origins of two (the Near-Earth
Asteroids and the Long-Period Comets) are well understood, with members
originating in the Asteroid belt and Oort cloud, respectively. By contrast, the
source of the third population, the Short-Period Comets, is still under debate.
The proximate source of these objects is the Centaurs, a population of
dynamically unstable objects that pass perihelion between the orbits of Jupiter
and Neptune. However, a variety of different origins have been suggested for
the Centaur population. Here, we present evidence that at least a significant
fraction of the Centaur population can be sourced from the planetary Trojan
clouds, stable reservoirs of objects moving in 1:1 mean-motion resonance with
the giant planets (primarily Jupiter and Neptune). Focusing on simulations of
the Neptunian Trojan population, we show that an ongoing flux of objects should
be leaving that region to move on orbits within the Centaur population. With
conservative estimates of the flux from the Neptunian Trojan clouds, we show
that their contribution to that population could be of order ~3%, while more
realistic estimates suggest that the Neptune Trojans could even be the main
source of fresh Centaurs. We suggest that further observational work is needed
to constrain the contribution made by the Neptune Trojans to the ongoing flux
of material to the inner Solar system, and believe that future studies of the
habitability of exoplanetary systems should take care not to neglect the
contribution of resonant objects (such as planetary Trojans) to the impact flux
that could be experienced by potentially habitable worlds.Comment: 16 pages, 4 figures, published in the International Journal of
Astrobiology (the arXiv.org's abstract was shortened, but the original one
can be found in the manuscript file
Formation and Dynamical Evolution of the Neptune Trojans - the Influence of the Initial Solar System Architecture
In this work, we investigate the dynamical stability of pre-formed Neptune
Trojans under the gravitational influence of the four giant planets in compact
planetary architectures, over 10 Myr. In our modelling, the initial orbital
locations of Uranus and Neptune (aN) were varied to produce systems in which
those planets moved on non-resonant orbits, or in which they lay in their
mutual 1:2, 2:3 and 3:4 mean-motion resonances (MMRs). In total, 420
simulations were carried out, examining 42 different architectures, with a
total of 840000 particles across all runs. In the non-resonant cases, the
Trojans suffered only moderate levels of dynamical erosion, with the most
compact systems (those with aN less than or equal 18 AU) losing around 50% of
their Trojans by the end of the integrations. In the 2:3 and 3:4 MMR scenarios,
however, dynamical erosion was much higher with depletion rates typically
greater than 66% and total depletion in the most compact systems. The 1:2
resonant scenarios featured disruption on levels intermediate between the
non-resonant cases and other resonant scenarios, with depletion rates of the
order of tens of percent. Overall, the great majority of plausible
pre-migration planetary architectures resulted in severe levels of depletion of
the Neptunian Trojan clouds. In particular, if Uranus and Neptune formed near
their mutual 2:3 or 3:4 MMR and at heliocentric distances within 18 AU (as
favoured by recent studies), we found that the great majority of pre-formed
Trojans would have been lost prior to Neptune's migration. This strengthens the
case for the great bulk of the current Neptunian Trojan population having been
captured during that migration.Comment: 17 pages, 2 figures, MNRAS (in press). Abstract slightly reduced in
size, but in original form in the PDF fil
Predictors of discordance among Chilean families
Parent-youth agreement on parental behaviors can characterize effective parenting. Although
discordance in families may be developmentally salient and harmful to youth outcomes, predictors
of discordance have been understudied, and existing research in this field has been mostly limited
to North American samples. This paper addressed this literature gap by using data from a
community-based study of Chilean adolescents. Analysis was based on 1,068 adolescents in
Santiago, Chile. The dependent variable was discordance which was measured by the difference
between parent and youth’s assessment of parental monitoring. Major independent variables for
this study were selected based on previous research findings that underscore youth’s
developmental factors, positive parental and familial factors and demographic factors. Descriptive
and multivariate analyses were conducted to examine the prevalence and associations between
youth, parental and familial measures with parent-youth discordance. There was a sizable level of
discordance between parent and youth’s report of parental monitoring. Youth’s gender and
externalizing behavior were significant predictors of discordance. Warm parenting and family
involvement were met with decreases in discordance. The negative interaction coefficients
between parental warmth and youth’s gender indicated that positive parental and familial
measures have a greater effect on reducing parent-youth discordance among male youths. Results
support the significance of positive family interactions in healthy family dynamics. Findings from
this study inform the importance of services and interventions for families that aim to reduce
youth’s problem behavior and to create a warm and interactive family environment.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181713/Accepted manuscrip
A Dynamical Analysis of the Proposed Circumbinary HW Virginis Planetary System
In 2009, the discovery of two planets orbiting the evolved binary star system
HW Virginis was announced, based on systematic variations in the timing of
eclipses between the two stars. The planets invoked in that work were
significantly more massive than Jupiter, and moved on orbits that were mutually
crossing - an architecture which suggests that mutual encounters and strong
gravitational interactions are almost guaranteed. In this work, we perform a
highly detailed analysis of the proposed HW Vir planetary system. First, we
consider the dynamical stability of the system as proposed in the discovery
work. Through a mapping process involving 91,125 individual simulations, we
find that the system is so unstable that the planets proposed simply cannot
exist, due to mean lifetimes of less than a thousand years across the whole
parameter space. We then present a detailed re-analysis of the observational
data on HW Vir, deriving a new orbital solution that provides a very good fit
to the observational data. Our new analysis yields a system with planets more
widely spaced, and of lower mass, than that proposed in the discovery work, and
yields a significantly greater (and more realistic) estimate of the uncertainty
in the orbit of the outermost body. Despite this, a detailed dynamical analysis
of this new solution similarly reveals that it also requires the planets to
move on orbits that are simply not dynamically feasible. Our results imply that
some mechanism other than the influence of planetary companions must be the
principal cause of the observed eclipse timing variations for HW Vir. If the
sys- tem does host exoplanets, they must move on orbits differing greatly from
those previously proposed. Our results illustrate the critical importance of
performing dynamical analyses as a part of the discovery process for
multiple-planet exoplanetary systems.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Societ
Origin and Dynamical Evolution of Neptune Trojans - II: Long Term Evolution
We present results examining the fate of the Trojan clouds produced in our
previous work. We find that the stability of Neptunian Trojans seems to be
strongly correlated to their initial post-migration orbital elements, with
those objects that survive as Trojans for billions of years displaying
negligible orbital evolution. The great majority of these survivors began the
integrations with small eccentricities (e < 0.2) and small libration amplitudes
(A < 30 - 40{\deg}). The survival rate of "pre-formed" Neptunian Trojans (which
in general survived on dynamically cold orbits (e < 0.1, i < 5 - 10{\deg}))
varied between ~5 and 70%. By contrast, the survival rate of "captured" Trojans
(on final orbits spread across a larger region of e-i element space) were
markedly lower, ranging between 1 and 10% after 4 Gyr. Taken in concert with
our earlier work, we note that planetary formation scenarios which involve the
slow migration (a few tens of millions of years) of Neptune from an initial
planetary architecture that is both resonant and compact (aN < 18 AU) provide
the most promising fit of those we considered to the observed Trojan
population. In such scenarios, we find that the current day Trojan population
would number ~1% of that which was present at the end of the planet's
migration, with the bulk being sourced from captured, rather than pre-formed
objects. We note, however, that even those scenarios still fail to reproduce
the currently observed portion of the Neptune Trojan population moving on
orbits with e 20{\deg}. Dynamical integrations of the currently
observed Trojans show that five out of the seven are dynamically stable on 4
Gyr timescales, while 2001 QR322, exhibits significant dynamical instability.
The seventh Trojan object, 2008 LC18, has such large orbital uncertainties that
only future studies will be able to determine its stability.Comment: 24 pages, 6 figures, accepted for publication in MNRAS (The abstract
was shortened. Original version can be found in the pdf file
Consolidation of complex events via reinstatement in posterior cingulate cortex
It is well-established that active rehearsal increases the efficacy of memory consolidation. It is also known that complex events are interpreted with reference to prior knowledge. However, comparatively little attention has been given to the neural underpinnings of these effects. In healthy adult humans, we investigated the impact of effortful, active rehearsal on memory for events by showing people several short video clips and then asking them to recall these clips, either aloud (Experiment 1) or silently while in an MRI scanner (Experiment 2). In both experiments, actively rehearsed clips were remembered in far greater detail than unrehearsed clips when tested a week later. In Experiment 1, highly similar descriptions of events were produced across retrieval trials, suggesting a degree of semanticization of the memories had taken place. In Experiment 2, spatial patterns of BOLD signal in medial temporal and posterior midline regions were correlated when encoding and rehearsing the same video. Moreover, the strength of this correlation in the posterior cingulate predicted the amount of information subsequently recalled. This is likely to reflect a strengthening of the representation of the video's content. We argue that these representations combine both new episodic information and stored semantic knowledge (or "schemas"). We therefore suggest that posterior midline structures aid consolidation by reinstating and strengthening the associations between episodic details and more generic schematic information. This leads to the creation of coherent memory representations of lifelike, complex events that are resistant to forgetting, but somewhat inflexible and semantic-like in nature
Revisiting the proposed planetary system orbiting the eclipsing polar HU Aquarii
It has recently been proposed, on the basis of eclipse-timing data, that the
eclipsing polar cataclysmic variable HU Aquarii is host to at least two giant
planets. However, that result has been called into question based upon the
dynamical stability of the proposed planets. In this work, we present a
detailed re-analysis of all eclipse timing data available for the HU Aquarii
system, making use of standard techniques used to fit orbits to radial-velocity
data. We find that the eclipse timings can be used to obtain a two-planet
solution that does not require the presence of additional bodies within the
system. We then perform a highly detailed dynamical analysis of the proposed
planetary system. We show that the improved orbital parameters we have derived
correspond to planets that are dynamically unstable on unfeasibly short
timescales (of order 10^4 years or less). Given these results, we discuss
briefly how the observed signal might in fact be the result of the intrinsic
properties of the eclipsing polar, rather than being evidence of dynamically
improbable planets. Taken in concert, our results highlight the need for
caution in interpreting such timing variations as being planetary in nature.Comment: Accepted for publication in MNRA
- …
