2,078 research outputs found
Recommended from our members
Emotion regulation and burnout in doctors: a systematic review.
Background: Burnout is a pervasive health condition affecting many doctors at various stages in their careers. Characterized by emotional exhaustion, depersonalization, and a reduced sense of personal accomplishment it can result in significant personal and professional consequences putting patient care at risk. Emotion regulation describes a capacity to self-modulate emotions to achieve desirable emotional outcomes. Emotional intelligence theory suggests that emotion regulation skills facilitate the maintenance of appropriate emotions, reducing or adapting undesirable emotions in oneself and others. Emotion regulation is usually automatic but can be controlled through learnt strategies. There is evidence that occupationally stressed individuals are less capable of down-regulating negative emotions. This paper systematically reviews studies of the role of emotion regulation in burnout in doctors. Aims: To examine the relationship between emotion regulation and burnout among doctors. Methods: Four online databases (Psych Info 1833-2017, Medline 1928-2017, Scopus 1960-2017 and Embase 1974-2017) were searched in August 2017. Searches returned 15 539 citations, which after de-duplication yielded 12 295 citations. After title and abstracts screening 12 273 citations were excluded. Twenty-two full text articles were read and eight excluded for ineligibility. Following data extraction, bias and methodological quality assessment, findings were synthesized using descriptive analysis and presented according to relevant themes. Results: A correlative relationship was observed between emotion regulation and burnout in doctors. Findings also indicated that-using self-regulatory or taught emotion regulation skills or interventions such as mindfulness were associated with a reduction in burnout. Conclusion: Emotion regulation is an important psychological variable associated with burnout
Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation
The soil microbial community alters patterns of selection on flowering time and fitness‐related traits in Ipomoea purpurea
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154384/1/ajb21426.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154384/2/ajb21426_am.pd
On the idempotents of Hecke algebras
We give a new construction of primitive idempotents of the Hecke algebras
associated with the symmetric groups. The idempotents are found as evaluated
products of certain rational functions thus providing a new version of the
fusion procedure for the Hecke algebras. We show that the normalization factors
which occur in the procedure are related to the Ocneanu--Markov trace of the
idempotents.Comment: 11 page
A trait‐based approach to plant species selection to increase functionality of farmland vegetative strips
Farmland vegetative strips are a proven source of support for ecosystem services and are globally used to mitigate effects of agricultural intensification. However, increasing pressures on agricultural land require increases in their functionality, such as supporting multiple ecosystem services concurrently.
The plant species sown in a vegetative strip seed mix determine the establishment, plant community, and ecosystem services that are supported. Currently, there is no clearly defined or structured method to select plant species for multifunctional vegetative strips.
Plant traits determine how plants support ecosystem services. Also, the establishment and persistence of plant communities is influenced by key internal and external factors. We propose a novel, evidence‐informed method of multifunctional vegetative strip design based on these essential traits and factors.
This study had three distinct stages. The first identified plant traits that support water quality protection, pollinators and/or crop pest natural enemies, using existing research evidence. We then identified key factors affecting plant community establishment and persistence. Finally, we applied these standardized methods to design a multifunctional vegetative strip for a specific case study (UK lowland farmland).
Key plant traits identified, included floral display size, flower color, nectar content, leaf surface area, leaf trichome density, percentage fine roots, root length, rooting depth, and root density. Key internal and external establishment factors included life history, native status, distribution, established competitive strategy, associated floristic diversity, flowering time and duration, and preferred soil type and pH. In the United Kingdom case study, we used five different plant traits and all of the identified factors to design a seed mix for a multifunctional vegetative strip.
We present a transferable method of vegetative strip design that can be adapted for other ecosystem services and climates. It provides landowners and advisors with an evidence‐informed approach to increase field margin functionality while supporting farmland biodiversity
Scaling in a continuous time model for biological aging
In this paper we consider a generalization to the asexual version of the
Penna model for biological aging, where we take a continuous time limit. The
genotype associated to each individual is an interval of real numbers over
which Dirac --functions are defined, representing genetically
programmed diseases to be switched on at defined ages of the individual life.
We discuss two different continuous limits for the evolution equation and two
different mutation protocols, to be implemented during reproduction. Exact
stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure
Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species
Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation, we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across-species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species-specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness
Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field
Climate change treatments - winter warming, summer drought and increased summer precipitation - have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate-induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct - for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions
First Observations of Long-Lived Meteor Trains with Resonance Lidar and Other Optical Instruments
In November 1998 the earth passed through a maximum in the cometary material responsible for the yearly Leonids meteor shower. The meteor storm event produced numerous examples of long-lived chemiluminescent trails--visible to the naked eye over New Mexico, where a major observation campaign was centered. One trail was detected for over an hour with a CCD camera employing a narrow sodium filter, and many others were observed for over ten minutes each. For the first time, sodium densities in such trails were measured while also being imaged in sodium light. We have verified one source of long-lived light emissions--a sodium-catalyzed reaction involving ozone--but it is far too weak to explain the visibility of such trails. In addition, we present a new explanation for the cylindrical shell appearance long reported for chemiluminescent trails and show that ozone depletion by chemical processes is a possible explanation for this phenomenon
Quantifying the importance of functional traits for primary production in aquatic plant communities
1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understanding which plant functional traits, for example, leaf size or plant height underlie primary production in aquatic plant communities. 2. To study how plant traits are related to primary production, we conducted a field survey in the Baltic Sea, Finland, which is characterized by high plant species and functional diversity. Thirty sites along an exposure gradient were sampled (150 plots), and nine plant morphological and chemical traits measured. The aim was to discern how community-weighted mean traits affect community production and whether this relationship changes along an environmental gradient using structural equation modelling (SEM). 3. Plant height had a direct positive effect on production along an exposure gradient (r = 0.33) and indirect effects through two leaf chemical traits, leaf δ15N and leaf δ13C (r = 0.24 and 0.18, respectively) resulting in a total effect of 0.28. In plant communities experiencing varying exposure, traits such as root N concentration and leaf δ15N had positive and negative effects on production, respectively. 4. Synthesis. Our results demonstrate that the relationship between aquatic plant functional traits and community production is variable and changes over environmental gradients. Plant height generally has a positive effect on community production along an exposure gradient, while the link between other traits and production changes in plant communities experiencing varying degrees of exposure. Thus, the underlying biological mechanisms influencing production differ in plant communities, emphasizing the need to resolve variability and its drivers in real-world communities. Importantly, functionally diverse plant communities sustain ecosystem functioning differently andPeer reviewe
- …