19 research outputs found

    A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson’s Disease

    Get PDF
    Parkinson's disease is a debilitating neurodegenerative disorder, and its molecular etiopathogenesis remains poorly understood. The discovery of monogenic forms has significantly advanced our understanding of the molecular mechanisms underlying PD, as it allows generation of cellular and animal models carrying the mutant gene to define pathological pathways. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause dominantly inherited PD, and variations increase risk, indicating that LRRK2 is an important player in both genetic and sporadic forms of the disease. G2019S, the most prominent pathogenic mutation, maps to the kinase domain and enhances enzymatic activity of LRRK2, which in turn seems to correlate with cytotoxicity. Since kinases are druggable targets, this has raised great hopes that disease-modifying therapies may be developed around modifying LRRK2 enzymatic activity. Apart from cytotoxicity, changes in autophagy have been consistently reported in the context of G2019S mutant LRRK2. Here, we will discuss current knowledge about mechanism(s) by which mutant LRRK2 may regulate autophagy, which highlights additional putative therapeutic targets.This work is supported by Grants from the Spanish Ministry of Economy and Competitiveness (BFU2011-29899), the Junta de Andaluc´ıa (CTS 6816), and the Michael J. Fox Foundation.Peer reviewe

    Ponències - Workshop MRAMA

    No full text
    MRAMA: Mètodes ràpids i automatització en microbiologia alimentària / Métodos rápidos y automatización en microbiología alimentaria / Rapid methods and automation in food microbiologyAmpliar i difondre els coneixements teòrics i pràctics sobre mètodes innovadors per detectar, comptar, aïllar i caracteritzar ràpidament els microorganismes, i els seus metabòlits, habituals en els aliments i l'aigua.Ampliar y difundir los conocimientos teóricos y prácticos sobre métodos innovadores para detectar, contar, aislar y caracterizar rápidamente los microorganismos, y sus metabolitos, habituales en los alimentos y el agua.(English) To broaden and spread the theoretical and practical knowledge about innovative methods for rapid detection, enumeration, isolation and characterization of foodborne and waterborne microorganisms and their products

    A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling

    No full text
    Mutations in LRRK2 (leucine-rich repeat kinase 2) represent a significant component of both sporadic and familial PD (Parkinson's disease). Pathogenic mutations cluster in the enzymatic domains of LRRK2, and kinase activity seems to correlate with cytotoxicity, suggesting the possibility of kinase-based therapeutic strategies for LRRK2-associated PD. Apart from cytotoxicity, changes in autophagy have consistently been observed upon overexpression of mutant, or knockdown of endogenous, LRRK2. However, delineating the precise mechanism(s) by which LRRK2 regulates autophagy has been difficult. Recent data suggest a mechanism involving late steps in autophagic-lysosomal clearance in a manner dependent on NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive lysosomal Ca 2+ channels. In the present paper, we review our current knowledge of the link between LRRK2 and autophagic-lysosomal clearance, including regulation of Ca 2+-dependent events involving NAADP. ©The Authors Journal compilation ©2012 Biochemical Society.Peer Reviewe

    Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP

    No full text
    Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca 2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets. © The Author 2011. Published by Oxford University Press. All rights reserved.Peer Reviewe

    Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP.

    Get PDF
    Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets

    Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP

    No full text
    Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca 2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets. © The Author 2011. Published by Oxford University Press. All rights reserved
    corecore