128 research outputs found

    In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn: Magnetic moments and mean-square charge radii of N=50-54 Ag

    Full text link
    In-gas-cell laser ionization spectroscopy studies on the neutron deficient 97-101Ag isotopes have been performed with the LISOL setup. Magnetic dipole moments and mean-square charge radii have been determined for the first time with the exception of 101Ag, which was found in good agreement with previous experimental values. The reported results allow tentatively assigning the spin of 97,99Ag to 9/2 and confirming the presence of an isomeric state in these two isotopes, whose collapsed hyperfine structure suggests a spin of 1/2 . The effect of the N=50 shell closure is not only manifested in the magnetic moments but also in the evolution of the mean-square charge radii of the isotopes investigated, in accordance with the spherical droplet model predictions

    Low-energy Coulomb excitation of 62^{62}Fe and 62^{62}Mn following in-beam decay of 62^{62}Mn

    Get PDF
    Sub-barrier Coulomb-excitation was performed on a mixed beam of 62^{62}Mn and 62^{62}Fe, following in-trap ÎČ−\beta^{-} decay of 62^{62}Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418~keV, which has been tentatively associated to a (2+,3+)→1g.s.+(2^{+},3^{+})\rightarrow1^{+}_{g.s.} transition. This fixes the relative positions of the ÎČ\beta-decaying 4+4^{+} and 1+1^{+} states in 62^{62}Mn for the first time. Population of the 21+2^{+}_{1} state was observed in 62^{62}Fe and the cross-section determined by normalisation to the 109^{109}Ag target excitation, confirming the B(E2)B(E2) value measured in recoil-distance lifetime experiments.Comment: 9 pages, 10 figure

    Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    Get PDF
    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect gamma rays from the excited states in 12Be. The gamma-ray detection enabled a clear identification of the four known bound states in 12Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results

    Coulomb excitation of 73Ga

    Full text link
    The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in energy

    Rb-37(97)60 : The Cornerstone of the Region of Deformation around A similar to 100

    Get PDF
    Excited states of the neutron-rich nuclei Rb-97,Rb- 99 were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of Rb-97 as being built on the pi g(9/2) [431] 3/2(+) Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N = 60 and rotational bands above. The present study defines the limits of the deformed region around A similar to 100 and indicates that the deformation of Rb-97 is essentially the same as that observed well inside the deformed region. It further highlights the power of the Coulomb-excitation technique for obtaining spectroscopic information far from stability. The Rb-99 case demonstrates the challenges of studies with very short-lived postaccelerated radioactive beams.Peer reviewe

    Collectivity in Pb-196,Pb-198 isotopes probed in Coulomb-excitation experiments at REX-ISOLDE

    Get PDF
    The neutron-deficient Pb-196,Pb-198 isotopes have been studied in Coulomb-excitation experiments employing the Miniball gamma-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2(+) states in Pb-196 and Pb-198 nuclei have been measured for the first time. Values of B (E2) = 18.2(-4.1)(+4.8) W. u. and B (E2) = 13.1(-3.5)(+4.9) W. u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to come down in energy and approach the spherical ground state.Peer reviewe

    Detailed α-decay study of 180Tl

    Get PDF
    International audienceA detailed α\alpha-decay spectroscopy study of 180Tl^{180}\mathrm{Tl} has been performed at ISOLDE (CERN). ZZ-selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl^{180}\mathrm{Tl}. Fine-structure α\alpha decays to excited levels in the daughter 176Au^{176}\mathrm{Au} were identified and an α\alpha-decay scheme of 180Tl^{180}\mathrm{Tl} was constructed based on an analysis of α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidences. Multipolarities of several γ\gamma-ray transitions deexciting levels in 176Au^{176}\mathrm{Au} were determined. Based on the analysis of reduced α\alpha-decay widths, it was found that all α\alpha decays are hindered, which signifies a change of configuration between the parent and all daughter states

    Quadrupole collectivity in neutron-rich Cd isotopes

    Get PDF
    4 pags., 2 figs. -- INPC 2013 – International Nuclear Physics ConferenceThe investigation of the excitation energies of the 21+ –states in the neutron-rich Cd isotopes shows an irregular behaviour when approaching the neutron shell-closure at N = 82. The energy of the 21+–state in 128Cd is lower than the one in 126Cd. The transition strength B(E2, 0gs+ → 21+) in the even isotopes 122−128Cd was measured in Coulomb excitation experiments with the high-purity germanium detector array MINIBALL at REXISOLDE (CERN). The values for 122,124Cd coincide with beyond-mean-field calculations with a resultant prolate deformation, whereas 126,128Cd are better described by shell-model calculations.This project is supported by BMBF (No. 06 DA 9036I, No. 05 P12 RDCIA, No. 05 P12 RDCIB and No. 05 P12 PKFNE), HIC for FAIR, EU through EURONS (No. 506065) and ENSAR (No. 262010) and the MINIBALL and REX-ISOLDE collaborations
    • 

    corecore