148 research outputs found

    Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae)

    Get PDF
    The understanding of Earth’s biodiversity depends critically on the accurate identification and nomenclature of species. Many species were described centuries ago, and in a surprising number of cases their nomenclature or type material remain unclear or inconsistent. A prime example is provided by Elephas maximus, one of the most iconic and well-known mammalian species, described and named by Linnaeus (1758) and today designating the Asian elephant. We used morphological, ancient DNA (aDNA), and high-throughput ancient proteomic analyses to demonstrate that a widely discussed syntype specimen of E. maximus, a complete foetus preserved in ethanol, is actually an African elephant, genus Loxodonta. We further discovered that an additional E. maximus syntype, mentioned in a description by John Ray (1693) cited by Linnaeus, has been preserved as an almost complete skeleton at the Natural History Museum of the University of Florence. Having confirmed its identity as an Asian elephant through both morphological and ancient DNA analyses, we designate this specimen as the lectotype of E. maximus

    Partial Genetic Turnover in Neandertals: Continuity in the East and Population Replacement in the West

    Get PDF
    Remarkably little is known about the population-level processes leading up to the extinction of the neandertal. To examine this, we use mitochondrial DNA sequences from 13 neandertal individuals, including a novel sequence from northern Spain, to examine neandertal demographic history. Our analyses indicate that recent western European neandertals (48 kyr) European neandertals. Using control region sequences, Bayesian demographic simulations provide higher support for a model of population fragmentation followed by separate demographic trajectories in subpopulations over a null model of a single stable population. The most parsimonious explanation for these results is that of a population turnover in western Europe during early Marine Isotope Stage 3, predating the arrival of anatomically modern humans in the region

    Association studies on 11 published colorectal cancer risk loci

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer type in the Western world. Over one million patients are diagnosed worldwide yearly. A family history of CRC is a major risk factor for CRC. The total genetic contribution to disease development is estimated to be 35%. High-risk syndromes caused by known genes such as familial adenomatous polyposis (FAP) and Lynch Syndrome (LS) explain less than 5% of that number. Recently, several genome-wide association studies (GWAS) have independently found numerous loci at which common single-nucleotide polymorphisms (SNPs) modestly influence the risk of developing colorectal cancer. In total, germline mutations in known genes and moderate- and low risk variants are today suggested to explain 10-15% of the total genetic burden. Hence, predisposed genetic factor are still left to be found. The aim of paper I was to investigate if 11 published loci reported to be associated with an increased or decreased risk of colorectal cancer could be confirmed in a Swedish-based cohort. The cohort was composed of 1786 cases and 1749 controls that were genotyped and analyzed statistically. Genotype– phenotype analysis, for all 11 SNPs and sex, age of onset, family history of CRC and tumor location, was performed. Of 11 loci, 5 showed statistically significant odds ratios similar to previously published findings. Most of the remaining loci showed similar OR to previous publications. Four statistically significant genotype–phenotype associations were reported. The aim of paper II was to further study these 11 SNPs and their possible correlation with morphological features in tumors. We analyzed 15 histological features in 1572 CRC cases. Five SNPs showed statistically significant associations with morphological parameters. The parameters were poor differentiation, mucin production, decreased frequency of Crohn-like peritumoral reaction and desmoplastic response. The aim of paper III was to identify new CRC loci using a genome wide linkage analysis. We used 121 non-FAP/LS colorectal cancer families and genotyped 600 subjects using SNP array chips. No statistically significant result was found. However, suggestive linkage was found in the parametric analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2) and one on 17p13.2 (LOD/HLOD=2.0). Our linkage study adds support for the previously suggested region on chromosome 9 and suggests three additional loci to be involved in colorectal cancer risk. It is debated whether CRC is a single entity or two different entities, colon- and rectal cancer. Studies have recognized their molecular differences. The aim of paper IV was to identify novel colon- and rectal loci. We performed a genome wide linkage analysis using 32 colon- and 56 rectal cancer families. No LOD or HLOD score above three was observed. However, results close to three could be demonstrated. A maximum HLOD= 2.49 at locus 6p21.1-p12.1 and HLOD= 2.55 at locus 18p11.2 was observed for the colon- and rectal cancer families respectively. Exome sequencing was done, on colon and rectal patients, in these regions of interest. We report 25 variants mutated in family members on chromosome 6 and 27 variants on chromosome 18. Further studies are ongoing to elucidate the importance of these variants

    Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny

    Get PDF
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery—outside permafrost areas—to specimens that are not older than approximately 0.5 million years (Myr). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I, and suggested the presence of protein residues in fossils of the Cretaceous period—although with limited phylogenetic use. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck’s rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel—which is the hardest tissue in vertebrates, and is highly abundant in the fossil record—can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation

    Quantitative EEG findings in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with brief depressive episodes and concurrent rapidly fluctuating psychiatric symptoms do not fit current diagnostic criteria and they can be difficult to diagnose and treat in an acute psychiatric setting. We wanted to study whether these patients had signs of more epileptic or organic brain dysfunction than patients with depression without additional symptomatology.</p> <p>Methods</p> <p>Sixteen acutely admitted patients diagnosed with a brief depressive episode as well as another concurrent psychiatric diagnosis were included. Sixteen patients with major depression served as controls. Three electroencephalographic studies (EEG) were visually interpreted and the background activity was also analysed with quantitative electroencephalography (QEEG).</p> <p>Results</p> <p>The group with brief depression and concurrent symptoms had multiple abnormal features in their standard EEG compared to patients with major depression, but they did not show significantly more epileptiform activity. They also had significantly higher temporal QEEG delta amplitude and interhemispheric temporal delta asymmetry.</p> <p>Conclusion</p> <p>Organic brain dysfunction may be involved in the pathogenesis of patients with brief depressive episodes mixed with rapidly fluctuating psychiatric symptoms. This subgroup of depressed patients should be investigated further in order to clarify the pathophysiology and to establish the optimal evaluation scheme and treatment in an acute psychiatric setting.</p

    Origins and genetic legacy of prehistoric dogs

    Get PDF
    Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry

    Historic sampling of a vanishing beast: Population structure and diversity in the Black Rhinoceros

    Get PDF
    The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north–south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity

    Prognostic Impact of Prolonged Cross-Clamp Time in Coronary Artery Bypass Grafting

    Get PDF
    BACKGROUND:The prognostic impact of cross-clamp time (XCT) in patients undergoing isolated coronary artery bypass grafting (CABG) has not been thoroughly investigated.MATERIAL AND METHODS:2957 patients who underwent on-pump isolated CABG from the prospective multicentre E-CABG study were the subjects of this analysis.RESULTS:The mean XCT in this series was 58±25minutes Cross-clamp time was >60 minutes in 1134 patients (38.3%), >75minutes in 619 patients (20.9%) and >90minutes in 296 patients (10.0%). Multivariate analysis showed that XCT was an independent predictor of 30-day mortality (p75minutes (2.9% vs. 1.7%, p=0.002, OR 3.479, 95%CI 1.609-7.520). Analysis of 428 propensity score matched pairs showed that XCT >75minutes was associated with significantly increased risk of early mortality, prolonged use of inotropes, postoperative use of intra-aortic balloon pump, use of extracorporeal membrane oxygenation, atrial fibrillation, prolonged stay in the intensive care unit and of composite major adverse events.CONCLUSIONS:Isolated CABG is currently performed with prolonged XCT in a significant number of patients and this seems to be a determinant of poor early outcome.</p

    Partial genomic survival of cave bears in living brown bears

    Get PDF
    Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species
    • 

    corecore