1,065 research outputs found

    VLT observations of the asymmetric Etched Hourglass Nebula, MyCn 18

    Get PDF
    Context. The mechanisms that form extreme bipolar planetary nebulae remain unclear. Aims. The physical properties, structure, and dynamics of the bipolar planetary nebula, MyCn 18, are investigated in detail with the aim of understanding the shaping mechanism and evolutionary history of this object. Methods. VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical Echelle spectra are used to investigate MyCn 18. Morpho-kinematic modelling was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to determine the kinematical age of the nebula and its main components. Results. A spectroscopic study of MyCn 18's central and offset region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Bracket gamma emission are detected from the central regions of MyCn 18. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A kinematical age of the nebula and its components were obtained by the P-V arrays and timescale analysis. Conclusions. The structure and kinematics of MyCn 18 are better understood using an interactive 3-D modelling tool called shape. A dimensional and timescale analysis of MyCn 18's major components provides a possible mechanism for the nebula's asymmetry. The putative central star is somewhat offset from the geometric centre of the nebula, which is thought to be the result of a binary system. We speculate that the engulfing and destruction of an exoplanet during the AGB phase may have been a key event in shaping MyCn 18 and generating of its hypersonic knotty outflow.Comment: 15 pages, 3 tables, 13 figures. Accepted for publication by A&

    Ejection of cool plasma into the hot corona

    Full text link
    We investigate the processes that lead to the formation, ejection and fall of a confined plasma ejection that was observed in a numerical experiment of the solar corona. By quantifying physical parameters such as mass, velocity, and orientation of the plasma ejection relative to the magnetic field, we provide a description of the nature of this particular phenomenon. The time-dependent three-dimensional magnetohydrodynamic (3D MHD) equations are solved in a box extending from the chromosphere to the lower corona. The plasma is heated by currents that are induced through field line braiding as a consequence of photospheric motions. Spectra of optically thin emission lines in the extreme ultraviolet range are synthesized, and magnetic field lines are traced over time. Following strong heating just above the chromosphere, the pressure rapidly increases, leading to a hydrodynamic explosion above the upper chromosphere in the low transition region. The explosion drives the plasma, which needs to follow the magnetic field lines. The ejection is then moving more or less ballistically along the loop-like field lines and eventually drops down onto the surface of the Sun. The speed of the ejection is in the range of the sound speed, well below the Alfven velocity. The plasma ejection is basically a hydrodynamic phenomenon, whereas the rise of the heating rate is of magnetic nature. The granular motions in the photosphere lead (by chance) to a strong braiding of the magnetic field lines at the location of the explosion that in turn is causing strong currents which are dissipated. Future studies need to determine if this process is a ubiquitous phenomenon on the Sun on small scales. Data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO) might provide the relevant information.Comment: 12 pages, 10 figure

    Magnetohydrodynamic activity inside a sphere

    Full text link
    We present a computational method to solve the magnetohydrodynamic equations in spherical geometry. The technique is fully nonlinear and wholly spectral, and uses an expansion basis that is adapted to the geometry: Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower spatial resolution is somewhat offset by being able to build all the boundary conditions into each of the orthogonal expansion functions and by the disappearance of any difficulties caused by singularities at the center of the sphere. The results reported here are for mechanically and magnetically isolated spheres, although different boundary conditions could be studied by adapting the same method. The intent is to be able to study the nonlinear dynamical evolution of those aspects that are peculiar to the spherical geometry at only moderate Reynolds numbers. The code is parallelized, and will preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the system (global energy, magnetic helicity, cross helicity). Examples of results for selective decay and mechanically-driven dynamo simulations are discussed. In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere

    Get PDF
    Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those parts of parameter space in which the code is accurate. The key control parameters seem to be mechanical and magnetic Reynolds numbers, the Rossby and Ekman numbers (which in our computations are varied mostly by varying the rate of rotation of the sphere) and the amount of mechanical helicity injected. Magnetic energy levels and magnetic dipole behavior are exhibited which fluctuate strongly on a time scale of a few eddy turnover times. These seem to stabilize as the rotation rate is increased until the limit of the code resolution is reached.Comment: 26 pages, 17 figures, submitted to New Journal of Physic

    WHAT IS THE MODE OF DEATH AMONG HEART FAILURE PATIENTS WITH HYPONATREMIA AND IMPLANTABLE CARDIOVERTER DEFIBRILLATORS?

    Get PDF
    Report submitted by IWMI Nile Basin and East Africa Sub-Regional Office, Addis Ababa, Ethiopia, to International Development Research Centre (IDRC). Project No.10344

    Coordinating government and community support for community language teaching in Australia: Overview with special attention to New South Wales

    Get PDF
    An overview of formal government language-in-education planning for community languages (CLs) that has been undertaken in Australia and New South Wales is provided, moving from the more informal programmes provided in the 1980s to school-oriented programmes and training at the turn of the century. These programmes depend on community support; for many of the teachers from the communities, methodological training is needed to complement their language and cultural skills. At the same time, Commonwealth (Federal) and State support for CL programmes has improved their quality and provides students with opportunities to study CLs at the senior secondary matriculation level. The paper concludes with specific recommendations for greater recognition of CL schools and for greater attention to CL teacher preparation

    Large scale flow effects, energy transfer, and self-similarity on turbulence

    Full text link
    The effect of large scales on the statistics and dynamics of turbulent fluctuations is studied using data from high resolution direct numerical simulations. Three different kinds of forcing, and spatial resolutions ranging from 256^3 to 1024^3, are being used. The study is carried out by investigating the nonlinear triadic interactions in Fourier space, transfer functions, structure functions, and probability density functions. Our results show that the large scale flow plays an important role in the development and the statistical properties of the small scale turbulence. The role of helicity is also investigated. We discuss the link between these findings and intermittency, deviations from universality, and possible origins of the bottleneck effect. Finally, we briefly describe the consequences of our results for the subgrid modeling of turbulent flows

    A multinational cross-sectional survey of the management of patient medication adherence by European healthcare professionals

    Get PDF
    Objectives To examine which interventions healthcare professionals use to support patients with taking medicines and their perceptions about the effectiveness of those actions. Design Cross-sectional multinational study. Setting Online survey in Austria, Belgium, England, France, Germany, Hungary, The Netherlands, Poland, Portugal and Switzerland. Participants A total of 3196 healthcare professionals comprising doctors (855), nurses (1047) and pharmacists (1294) currently registered and practising in primary care and community settings. Main outcome measures Primary outcome: Responses to the question ‘I ask patients if they have missed any doses of their medication’ for each profession and in each country. Secondary outcome: Responses to 50 items concerning healthcare professional behaviour to support patients with medication-taking for each profession and in each country. Results Approximately half of the healthcare professionals in the survey ask patients with long-term conditions whether they have missed any doses of their medication on a regular basis. Pharmacists persistently report that they intervene less than the other two professions to support patients with medicines. No country effects were found for the primary outcome. Conclusions Healthcare professionals in Europe are limited in the extent to which they intervene to assist patients having long-term conditions with medication adherence. This represents a missed opportunity to support people with prescribed treatment. These conclusions are based on the largest international survey to date of healthcare professionals’ management of medication adherence
    • …
    corecore