455 research outputs found

    Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study

    Get PDF
    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images

    Intramolecular bonds resolved on a semiconductor surface

    Get PDF
    Noncontact atomic force microscopy (NC-AFM) is now routinely capable of obtaining submolecular resolution, readily resolving the carbon backbone structure of planar organic molecules adsorbed on metal substrates. Here we show that the same resolution may also be obtained for molecules adsorbed on a reactive semiconducting substrate. Surprisingly, this resolution is routinely obtained without the need for deliberate tip functionalization. Intriguingly, we observe two chemically distinct apex types capable of submolecular imaging. We characterize our tip apices by “inverse imaging” of the silicon adatoms of the Si(111)−7×7 surface and support our findings with detailed density functional theory (DFT) calculations. We also show that intramolecular resolution on individual molecules may be readily obtained at 78 K, rather than solely at 5 K as previously demonstrated. Our results suggest a wide range of tips may be capable of producing intramolecular contrast for molecules adsorbed on semiconductor surfaces, leading to a much broader applicability for submolecular imaging protocols

    Common physical framework explains phase behavior and dynamics of atomic, molecular, and polymeric network formers

    Get PDF
    We show that the self-assembly of a diverse collection of building blocks can be understood within a common physical framework. These building blocks, which form periodic honeycomb networks and nonperiodic variants thereof, range in size from atoms to micron-scale polymers and interact through mechanisms as different as hydrogen bonds and covalent forces. A combination of statistical mechanics and quantum mechanics shows that one can capture the physics that governs the assembly of these networks by resolving only the geometry and strength of building-block interactions. The resulting framework reproduces a broad range of phenomena seen experimentally, including periodic and nonperiodic networks in thermal equilibrium, and nonperiodic supercooled and glassy networks away from equilibrium. Our results show how simple “design criteria” control the assembly of a wide variety of networks and suggest that kinetic trapping can be a useful way of making functional assemblies

    Physisorption controls the conformation and density of states of an adsorbed porphyrin

    Get PDF
    Conformational changes caused by adsorption can dramatically affect a molecule’s properties. Despite extensive study, however, the exact mechanisms underpinning conformational switching are often unclear. Here we show that the conformation of a prototypical flexible molecule, the freebase tetra(4-bromophenyl) porphyrin, adsorbed on Cu(111), depends critically on its precise adsorption site and that, remarkably, large conformational changes are dominated by van der Waals interactions between the molecule and the substrate surface. A combination of scanning probe microscopy, single-molecule manipulation, DFT with dispersion density functional theory, and molecular dynamics simulations show that van der Waals forces drive significant distortions of the molecular architecture so that the porphyrin can adopt one of two low-energy conformations. We find that adsorption driven by van der Waals forces alone is capable of causing large shifts in the molecular density of states, despite the apparent absence of chemical interactions. These findings highlight the essential role that van der Waals forces play in determining key molecular properties

    Photochemistry of framework-supported M(diimine)(CO)₃X complexes in 3D Lithium-Carboxylate metal−organic frameworks: monitoring the effect of framework cations

    Get PDF
    The structures and photochemical behaviour of two new metal-organic frameworks are reported. Reaction of Re(2,2Êč-bipyÊč-5,5Êč-dicarboxylic acid)(CO)₃Cl or Mn(2,2Êč-bipyÊč-5,5Êč- dicarboxylic acid)(CO)₃Br with either LiCl or LiBr, respectively, produces single crystals of {Li₂(DMF)₂[(2,2Êč-bipyÊč-5,5Êč-dicarboxylate)Re(CO)₃Cl]}n (ReLi) or {Li₂(DMF)₂[(2,2Êč-bipyÊč- 5,5Êč-dicarboxylate)Mn(CO)₃Br]}n (MnLi). The structures formed by the two MOFs comprise one-dimensional chains of carboxylate-bridged Li(I) cations that are cross-linked by units of Re(2,2Êč-bipyÊč-5,5Êč-dicarboxylate)(CO)₃Cl (ReLi) or Mn(2,2Êč-bipyÊč-5,5Êč- dicarboxylate)(CO)₃Br (MnLi). The photophysical and photochemical behaviour of both ReLi and MnLi are probed. The rhenium-containing MOF, ReLi, exhibits luminescence and the excited state behaviour, as established by time-resolved infra-red measurements, are closer in behaviour to that of unsubstituted [Re(bipy)(CO)₃Cl] rather than a related MOF where the Li(I) cations are replaced by Mn(II) cations. These observations are further supported by DFT calculations. Upon excitation MnLi forms a dicarbonyl species which rapidly recombines with the dissociated CO, in a fashion consistent with the majority of the photoejected CO not escaping the MOF channels

    Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings

    Get PDF
    The degree of randomness, or partial order, present in two-dimensional supramolecular arrays of isophthalate tetracarboxylic acids is shown to vary due to subtle chemical changes such as the choice of solvent or small differences in molecular dimensions. This variation may be quantified using an order parameter and reveals a novel phase behaviour including random tiling with varying critical properties as well as ordered phases dominated by either parallel or non-parallel alignment of neighbouring molecules, consistent with long-standing theoretical studies. The balance between order and randomness is driven by small differences in the intermolecular interaction energies, which we show, using numerical simulations, can be related to the measured order parameter. Significant variations occur even when the energy difference is much less than the thermal energy highlighting the delicate balance between entropic and energetic effects in complex self-assembly processes

    Minority-carrier effects in poly-phenylenevinylene as studied by electrical characterization

    Get PDF
    Electrical measurements have been performed on poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] in a pn junction with silicon. These included current-voltage measurements, capacitance-voltage measurements, capacitance-transient spectroscopy, and admittance spectroscopy. The measurements show evidence for large minority-carrier injection into the polymer possibly enabled by interface states for which evidence is also found. The shallow acceptor level depth (0.12 eV) and four deep trap level activation energies (0.30 and 1.0 eV majority-carrier type; 0.48 and 1.3 eV minority-carrier type) are found. Another trap that is visible at room temperature has point-defect nature. (C) 2001 American Institute of Physics

    Finding Oxford’s medieval Jewry using organic residue analysis, faunal records and historical documents

    Get PDF
    Food is often one of the most distinctive expressions of social, religious, cultural or ethnic groups. However, the archaeological identification of specific religious dietary practices, including the Jewish tradition of keeping kosher, associated with ritual food practices and taboos, is very rare. This is arguably one of the oldest known diets across the world and, for an observant Jew, maintaining dietary laws (known as Kashruth) is a fundamental part of everyday life. Recent excavations in the early medieval Oxford Jewish quarter yielded a remarkable assemblage of animal bones, marked by a complete absence of pig specimens and a dominance of kosher (permitted) birds, domestic fowl and goose. To our knowledge, this is the first identification of a Jewish dietary signature in British zooarchaeology, which contrasted markedly with the previous Saxon phase where pig bones were present in quantity and bird bones were barely seen. Lipid residue analysis of pottery from St Aldates showed that vessels from the possible Jewish houses were solely used to process ruminant carcass products, with an avoidance of pig product processing, correlating well with the faunal data. In contrast, lipid analysis of pottery from comparative assemblages from the previous Saxon phase at the site and a contemporaneous site in the city, The Queen’s College, shows that the majority of these vessels appear to have been used to process mixtures of both ruminant and non-ruminant (pig) products. Here, the combination of organic residue analysis, site excavation and animal and fish bone evidence was consistent with the presence of Jewish houses in eleventh- and twelfth-century St Aldates, Oxford, hitherto only suspected through documentary information. This is the first identification of specific religious dietary practices using lipid residue analysis, verifying that, at least 800 years ago, medieval Jewish Oxford communities practised dietary laws known as Kashruth

    Hydro-ionothermal synthesis of lanthanide-organic frameworks with 1,4-phenylenebis(methylene)diphosphonate

    Get PDF
    A synthetic approach combining hydrothermal and ionothermal (eutectic mixture of choline chloride and malonic acid) procedures is proposed that allowed the isolation of the first lanthanide-organic frameworks with residues of 1,4-phenylenebis(methylene)- diphosphonic acid (H4pmd), [Ln(Hpmd)(H2O)] (where Ln3+ ) Ce3+ and Pr3+), exhibiting an unprecedented trinodal topology with 3- and 8-connected nodes. The structural details were unveiled from single-crystal X-ray diffraction and the materials were characterized using standard techniques.FCT - POCI-PPCDT/QUI/58377/2004FEDER - POCIGrant - SFRH/BPD/9309/200

    Photophysics and electrochemistry of a platinum-acetylide disubstituted perylenediimide

    Get PDF
    The synthesis and photophysical study of a perylene diimide (PDI) functionalised with platinum acetylide units of the type, trans{–C[triple bond, length as m-dash]C–Pt(PBu3)2–C[triple bond, length as m-dash]C–Ph} and comparison with a phenylacetylide substituted model compound are reported. The model compound demonstrates typical perylene absorption and photoluminescence spectra characteristic of singlet excited state formation and decay. The Pt-substitution, however, appears to induce spin–orbit coupling into the chromophore and giving rise to a triplet excited state which was confirmed by transient absorption measurements. This excited state is quenched by oxygen, leading to the formation of singlet oxygen in dichloromethane, recorded by time-resolved near-infrared luminescence measurements
    • 

    corecore