445 research outputs found
Minimal symmetric Darlington synthesis
We consider the symmetric Darlington synthesis of a p x p rational symmetric
Schur function S with the constraint that the extension is of size 2p x 2p.
Under the assumption that S is strictly contractive in at least one point of
the imaginary axis, we determine the minimal McMillan degree of the extension.
In particular, we show that it is generically given by the number of zeros of
odd multiplicity of I-SS*. A constructive characterization of all such
extensions is provided in terms of a symmetric realization of S and of the
outer spectral factor of I-SS*. The authors's motivation for the problem stems
from Surface Acoustic Wave filters where physical constraints on the
electro-acoustic scattering matrix naturally raise this mathematical issue
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter
A large prototype of 1.3m3 was designed and built as a demonstrator of the
semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC
experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each
unit is built of an active layer made of 1m2 Glass Resistive Plate
Chamber(GRPC) detector placed inside a cassette whose walls are made of
stainless steel. The cassette contains also the electronics used to read out
the GRPC detector. The lateral granularity of the active layer is provided by
the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a
self-supporting mechanical structure built also of stainless steel plates
which, with the cassettes walls, play the role of the absorber. The prototype
was designed to be very compact and important efforts were made to minimize the
number of services cables to optimize the efficiency of the Particle Flow
Algorithm techniques to be used in the future ILC experiments. The different
components of the SDHCAL prototype were studied individually and strict
criteria were applied for the final selection of these components. Basic
calibration procedures were performed after the prototype assembling. The
prototype is the first of a series of new-generation detectors equipped with a
power-pulsing mode intended to reduce the power consumption of this highly
granular detector. A dedicated acquisition system was developed to deal with
the output of more than 440000 electronics channels in both trigger and
triggerless modes. After its completion in 2011, the prototype was commissioned
using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
A Plan for Implementation of a Student Assistance Program within a Rural High School in West Central Georgia
Students in school today are faced with many problems that place them at-risk of being unable to complete their educations. Educators are being faced with the task of providing students with assistance in coping with the problems which are interfering with the successful completion of their educations.
Research indicates that one of the most effective means of helping students cope with the problems impeding their success in schools is the student assistance program concept, which is also known as the SAР.
The resulting project shows how one rural school system planned for the implementation of a student assistance program in its junior and senior high schools
Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces.
Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed.
The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms.
Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications.
The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use
The MU-RAY project: Volcano radiography with cosmic-ray muons
Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two X–Y planes of 2x2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip.Published120-1231.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveJCR Journalrestricte
Mosaicism for combined tetrasomy of chromosomes 8 and 18 in a dysmorphic child: A result of failed tetraploidy correction?
<p>Abstract</p> <p>Background</p> <p>Mosaic whole-chromosome tetrasomy has not previously been described as a cause of fetal malformations.</p> <p>Case presentation</p> <p>In a markedly dysmorphic child with heart malformations and developmental delay, CGH analysis of newborn blood DNA suggested a 50% dose increase of chromosomes 8 and 18, despite a normal standard karyotype investigation. Subsequent FISH analysis revealed leukocytes with four chromosomes 8 and four chromosomes 18. The child's phenotype had resemblance to both mosaic trisomy 8 and mosaic trisomy 18. The double tetrasomy was caused by mitotic malsegregation of all four chromatids of both chromosome pairs. A possible origin of such an error is incomplete correction of a tetraploid state resulting from failed cytokinesis or mitotic slippage during early embryonic development.</p> <p>Conclusion</p> <p>This unique case suggests that embryonic cells may have a mechanism for tetraploidy correction that involves mitotic pairing of homologous chromosomes.</p
- …
