We consider the symmetric Darlington synthesis of a p x p rational symmetric
Schur function S with the constraint that the extension is of size 2p x 2p.
Under the assumption that S is strictly contractive in at least one point of
the imaginary axis, we determine the minimal McMillan degree of the extension.
In particular, we show that it is generically given by the number of zeros of
odd multiplicity of I-SS*. A constructive characterization of all such
extensions is provided in terms of a symmetric realization of S and of the
outer spectral factor of I-SS*. The authors's motivation for the problem stems
from Surface Acoustic Wave filters where physical constraints on the
electro-acoustic scattering matrix naturally raise this mathematical issue