1,398 research outputs found

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function

    Get PDF
    The mechanical properties of biological systems are emerging as fundamental in determining their functional activity. For example, cells continuously probe their environment by applying forces and, at the same time, are exposed to forces produced by the same environment. Also in biological membranes, the activity of membrane related proteins are affected by the overall mechanical properties of the hosting environment. Traditionally, the mesoscopic mechanical properties of lipid bilayers have been studied by micropipette aspiration techniques. In recent years, the possibility of probing mechanical properties of lipid bilayers at the nanoscale has been promoted by the force spectroscopy potentiality of Atomic Force Microscopes (AFM). By acquiring force-curves on supported lipid bilayers (SLBs) it is possible to probe the mechanical properties on a scale relevant to the interaction between membrane proteins and lipid bilayers and to monitor changes of these properties as a result of a changing environment. Here, we review a series of force spectroscopy experiments performed on SLBs with an emphasis on the functional consequences the measured mechanical properties can have on membrane proteins. We also discuss the force spectroscopy experiments on SLBs in the context of theories developed for dynamic force spectroscopy experiments with the aim to extract the kinetic and energetic description of the process of membrane rupture

    Focusing on the Fixed Point of 4D Simplicial Gravity

    Get PDF
    Our earlier renormalization group analysis of simplicial gravity is extended. A high statistics study of the volume and coupling constant dependence of the cumulants of the node distribution is carried out. It appears that the phase transition of the theory is of first order, contrary to what is generally believed.Comment: Latex, 20 pages, 6 postscript figures, published versio

    Operator Formulation of q-Deformed Dual String Model

    Full text link
    We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.Comment: 6pages, Late

    Dynamic Force Spectroscopy on Supported Lipid Bilayers: Effect ofTemperature and Sample Preparation

    Get PDF
    Biological membranes are constantly exposed to forces. The stress-strain relation in membranes determines thebehavior of many integral membrane proteins or other membrane related-proteins that show a mechanosensitive behavior. Here, we studied by force spectroscopy the behavior of supported lipid bilayers (SLBs) subjected to forces perpendicular to their plane. We measured the lipid bilayer mechanical properties and the force required for the punch-through event characteristic of atomic force spectroscopy on SLBs as a function of the interleaflet coupling. We found that for an uncoupled bilayer, the overall tip penetration occurs sequentially through the two leaflets, giving rise to two penetration events. In the case of a bilayer with coupled leaflets, penetration of the atomic force microscope tip always occurred in a single step. Considering the dependence of the jump-through force value on the tip speed, we also studied the process in the context of dynamic force spectroscopy (DFS). We performed DFS experiments by changing the temperature and cantilever spring constant, and analyzed the resultsin the context of the developed theories for DFS. We found that experiments performed at different temperatures and withdifferent cantilever spring constants enabled a more effective comparison of experimental data with theory in comparisonwith previously published data

    Nonlinear Dynamic System Identification in the Spectral Domain Using Particle-Bernstein Polynomials

    Get PDF
    System identification (SI) is the discipline of inferring mathematical models from unknown dynamic systems using the input/output observations of such systems with or without prior knowledge of some of the system parameters. Many valid algorithms are available in the literature, including Volterra series expansion, Hammerstein–Wiener models, nonlinear auto-regressive moving average model with exogenous inputs (NARMAX) and its derivatives (NARX, NARMA). Different nonlinear estimators can be used for those algorithms, such as polynomials, neural networks or wavelet networks. This paper uses a different approach, named particle-Bernstein polynomials, as an estimator for SI. Moreover, unlike the mentioned algorithms, this approach does not operate in the time domain but rather in the spectral components of the signals through the use of the discrete Karhunen–Loève transform (DKLT). Some experiments are performed to validate this approach using a publicly available dataset based on ground vibration tests recorded from a real F-16 aircraft. The experiments show better results when compared with some of the traditional algorithms, especially for large, heterogeneous datasets such as the one used. In particular, the absolute error obtained with the prosed method is 63% smaller with respect to NARX and from 42% to 62% smaller with respect to various artificial neural network-based approaches

    γ-Hemolysin oligomeric structure and effect of its formation on supported lipid bilayers: An AFM Investigation.

    Get PDF
    γ-Hemolysins are bicomponent β-barrel pore forming toxins produced by Staphylococcus aureus as water-soluble monomers, which assemble into oligomeric pores on the surface of lipid bilayers. Here, after investigating the oligomeric structure of γ-hemolysins on supported lipid bilayers (SLBs) by atomic force microscopy (AFM), we studied the effect produced by this toxin on the structure of SLBs. We found that oligomeric structures with different number of monomers can assemble on the lipid bilayer being the octameric form the most stable one. Moreover, in this membrane model we found that γ-hemolysins can form clusters of oligomers inducing a curvature in the lipid bilayer, which could probably enhance the aggressiveness of these toxins at high concentrations

    Vanishing Theorems and String Backgrounds

    Get PDF
    We show various vanishing theorems for the cohomology groups of compact hermitian manifolds for which the Bismut connection has (restricted) holonomy contained in SU(n) and classify all such manifolds of dimension four. In this way we provide necessary conditions for the existence of such structures on hermitian manifolds. Then we apply our results to solutions of the string equations and show that such solutions admit various cohomological restrictions like for example that under certain natural assumptions the plurigenera vanish. We also find that under some assumptions the string equations are equivalent to the condition that a certain vector is parallel with respect to the Bismut connection.Comment: 25 pages, Late
    corecore