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DIFFEOMORPHIC APPROXIMATION OF

SOBOLEV HOMEOMORPHISMS

TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

Abstract. Every homeomorphism h : X → Y between planar open sets
that belongs to the Sobolev class W 1,p(X,Y), 1 < p < ∞, can be ap-
proximated in the Sobolev norm by C ∞-smooth diffeomorphisms.

1. Introduction

By the very definition, the Sobolev space W 1,p(X,R), 1 6 p < ∞, in
a domain X ⊂ Rn, is the completion of C∞-smooth real functions having
finite Sobolev norm

‖u‖W 1,p(X) = ‖u‖L p(X) + ‖∇u‖L p(X) <∞.
The question of smooth approximation becomes more intricate for Sobolev
mappings, whose target is not a linear space, say a smooth manifold [11, 19,
20, 21] or even for mappings between open subsets X,Y of the Euclidean

space Rn. If a given homeomorphism h : X onto−→ Y is in the Sobolev class
W 1,p(X,Y) it is not obvious at all as to whether one can preserve injectivity
property of the C∞-smooth approximating mappings. It is rather surpris-
ing that this question remained unanswered after the global invertibility of
Sobolev mappings became an issue in nonlinear elasticity [4, 17, 31, 35]. It
was formulated and promoted by John M. Ball in the following form.

Question. [6, 7] If h ∈ W 1,p(X,Rn) is invertible, can h be approximated in
W 1,p by piecewise affine invertible mappings?

J. Ball attributes this question to L.C. Evans and points out its relevance
to the regularity of minimizers of neohookean energy functionals [5, 9, 14,
16, 34]. Partial results toward the Ball-Evans problem were obtained in [30]
(for planar bi-Sobolev mappings that are smooth outside of a finite set) and
in [10] (for planar bi-Hölder mappings, with approximation in the Hölder
norm). The articles [6, 33] illustrate the difficulty of preserving invertibility
in the approximation process. In [24] we provided an affirmative answer
to the Ball-Evans question in the planar case when p = 2. In the present
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2 TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

paper we extend the result of [24] to all Sobolev classes W 1,p(X,Y) with
1 < p <∞. The case p = 1 still remains open.

Let X be a nonempty open set in R2. We study complex-valued functions
h = u + iv : X → C ' R2 of Sobolev class W 1,p(X,C), 1 < p < ∞. Their
real and imaginary part have well defined gradient in L p(X,R2)

∇u : X→ R2 and ∇v : X→ R2.

Then we introduce the gradient mapping of h, by setting

(1.1) ∇h = (∇u,∇v) : X→ R2 × R2.

The L p-norm of the gradient mapping and the p-energy of h are defined by

(1.2) ‖∇h‖L p(X) =

[∫
X

(|∇u|p + |∇v|p)
] 1
p

, EX[h] = EpX[h] = ‖∇h‖pL p(X).

The reader may wish to notice that this norm is slightly different from what
can be found in other texts in which the authors use the differential matrix
of h instead of the gradient mapping, so

(1.3) ‖Dh‖L p(X) =

[∫
X

(
|∇u|2 + |∇v|2

) p
2

] 1
p

.

Thus our approach involves coordinate-wise p-harmonic mappings, which we
still call p-harmonic for the sake of brevity. We shall take an advantage of
the gradient mapping on numerous occasions, by exploring the associated
uncoupled system of real p-harmonic equations for mappings with smallest
p-energy. Our theorem reads as follows.

Theorem 1.1. Let h : X onto−→ Y be an orientation-preserving homeomor-
phism in the Sobolev space W 1,p

loc (X,Y), 1 < p < ∞, defined for open sets

X,Y ⊂ R2. Then there exist C∞-diffeomorphisms h` : X onto−→ Y, ` = 1, 2, . . .
such that

(i) h` − h ∈ W 1,p
◦ (X,R2), ` = 1, 2, . . .

(ii) lim
`→∞

(h` − h) = 0, uniformly on X

(iii) lim
`→∞
‖∇h` −∇h‖L p(X) = 0

(iv) ‖∇h`‖L p(X) 6 ‖∇h‖L p(X), for ` = 1, 2, . . .

(v) If h is a C∞-diffeomorphism outside of a compact subset of X, then
there is a compact subset of X outside which h` ≡ h, for all ` = 1, 2, . . .

A straightforward triangulation argument yields the following corollary.

Corollary 1.2. Let h : X onto−→ Y be an orientation-preserving homeomor-
phism in the Sobolev space W 1,p

loc (X,Y), 1 < p < ∞, defined for open sets

X,Y ⊂ R2. Then there exist piecewise affine homeomorphisms h` : X onto−→ Y,
` = 1, 2, . . . such that

(i) h` − h ∈ W 1,p
◦ (X,R2), ` = 1, 2, . . .
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(ii) lim
`→∞

(h` − h) = 0, uniformly on X

(iii) lim
`→∞
‖∇h` −∇h‖L p(X) = 0.

(iv) If h is affine outside of a compact subset of X, then there is a compact
subset of X outside which h` ≡ h, for all ` = 1, 2, . . .

We conclude this introduction with a sketch of the proof. The construc-
tion of an approximating diffeomorphism involves five consecutive modifi-
cations of h. Steps 1, 2, and 4 are p-harmonic replacements based on the
Alessandrini-Sigalotti extension [3] of the Radó-Kneser-Choquet Theorem.
The other steps involve an explicit smoothing procedure along crosscuts.
For this, we adopted some lines of arguments used in J. Munkres’ work [32].

2. p-harmonic mappings and preliminaries

Let Ω be a bounded domain in the complex plain C ' R2. A function
u : Ω→ R in the Sobolev class W 1,p

loc (Ω), 1 < p <∞, is called p-harmonic if

(2.1) div |∇u|p−2∇u = 0

meaning that

(2.2)

∫
Ω
〈|∇u|p−2∇u,∇ϕ〉 = 0 for every ϕ ∈ C∞◦ (Ω).

The first observation is that the gradient map f = ∇u : Ω → R2 is K-
quasiregular with 1 6 K 6 max{p − 1, 1/(p − 1)}, see [12]. Consequently

u ∈ C 1,α
loc (Ω) with some 0 < α = α(p) 6 1. In fact [25] the foremost

regularity of a p-harmonic function (p 6= 2) is C k,α
loc (Ω), where the integer

k > 1 and the Hölder exponent α ∈ (0, 1] are determined by the equation

k + α =
7p− 6 +

√
p2 + 12p− 12

6p− 6
> 1 +

1

3
.

Thus, regardless of the exponent p, we have u ∈ C 1,α
loc (Ω) with α = 1/3.

Clearly, by elliptic regularity theory, outside the singular set

S =
{
z ∈ Ω: ∇u(z) = 0

}
,

we have u ∈ C∞(Ω\S). The singular set, being the set of zeros of a quasireg-
ular mapping, consists of isolated points; unless u ≡ const. Pertaining to
regularity up to the boundary, we consider a domain Ω whose boundary
near a point z◦ ∈ ∂Ω is a C∞-smooth arc, say Γ ⊂ ∂Ω. Precisely, we as-
sume that there exist a disk D = D(z◦, ε) and a C∞-smooth diffeomorphism

ϕ : D onto−→ C such that

ϕ(D ∩ Ω) = C+ = {z : Im z > 0}
ϕ(Γ) = R = {z : Im z = 0}

ϕ(D \ Ω) = C− = {z : Im z < 0}.
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Proposition 2.1 (Boundary Regularity). Suppose u ∈ W 1,p(Ω) ∩ C (Ω) is
p-harmonic in Ω and C∞-smooth when restricted to Γ. Then u is C 1,α-
regular up to Γ, meaning that u extends to D as a C 1,α(D)-regular function,
where α depends only on p.

2.1. The Dirichlet problem. There are two formulations of the Dirichlet
boundary value problem for p-harmonic equation; both are essential for our
investigation. We begin with the variational formulation.

Lemma 2.2. Let u◦ ∈ W 1,p(Ω) be a given Dirichlet data. There exists

precisely one function u ∈ u◦ + W 1,p
◦ (Ω) which minimizes the p-harmonic

energy:

Ep[u] = inf

{∫
Ω
|∇w|p : w ∈ u◦ + W 1,p

◦ (Ω)

}
.

The solution u is certainly a p-harmonic function, so C 1,α
loc (Ω)-regular.

However, more efficient to us will be the following classical formulation of
the Dirichlet problem.

Problem 2.3. Given u◦ ∈ C (∂Ω) find a p-harmonic function u in Ω which
extends continuously to Ω such that u|∂Ω

= u◦.

It is not difficult to see that such solution (if exists) is unique. How-
ever, the existence poses rather delicate conditions on ∂Ω and the data
u◦ ∈ C (Ω). We shall confine ourselves to Jordan domains Ω ⊂ C and the
Dirichlet data u◦ ∈ C (Ω) of finite p-harmonic energy. In this case both for-
mulations are valid and lead to the same solution. Indeed, the variational
solution is continuous up to the boundary because each boundary point of a
planar Jordan domain is a regular point for the p-Laplace operator ∆p [18,
p.418]. See [22, 6.16] for the discussion of boundary regularity and relevant
capacities and [27, Lemma 2] for a capacity estimate that applies to simply
connected domains.

Proposition 2.4 (Existence). Let Ω ⊂ C be a bounded Jordan domain
and u◦ ∈ W 1,p(Ω) ∩ C (Ω). There exists, unique, p-harmonic function u ∈
W 1,p(Ω) ∩ C (Ω) such that u|∂Ω

= u◦|∂Ω
.

2.2. Radó-Kneser-Choquet Theorem. Let h = u+iv be a complex har-
monic mapping in a Jordan domain U that is continuous on U. Assume that

the boundary mapping h : ∂U onto−→ Γ is an orientation-preserving homeomor-
phism onto a convex Jordan curve. Then h is a C∞-smooth diffeomorphism
of U onto the bounded component of C \ Γ. Thus, in particular, the Ja-
cobian determinant J(z, h) = |hz|2 − |hz̄|2 is strictly positive in U, see [15,
p.20]. Suppose, in addition, that ∂U contains a C∞-smooth arc γ ⊂ ∂U,
and h takes γ onto a C∞-smooth subarc in Γ. Then h is C∞-smooth up
to γ and its Jacobian determinant is positive on γ as well, see [15, p.116].
Numerous presentations of the proof of Radó-Kneser-Choquet Theorem can
be found, [15]. The idea that goes back to Kneser [26] and Choquet [13]
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is to look at the structure of the level curves of the coordinate functions
u = Reh, v = Imh and their linear combinations. These ideas have been
applied to more general linear and nonlinear elliptic systems of PDEs in
the complex plane [8], see also [1, 2, 28, 29] for related problems concerning
critical points. In the present paper we shall explore a result due to G.
Alessandrini and M. Sigalotti [3] for a nonlinear system that consists of two
p-harmonic equations{

div|∇u|p−2∇u = 0

div|∇v|p−2∇v = 0
, 1 < p <∞, h = u+ iv.

Call it uncoupled p-harmonic system. The novelty and key element in [3] is
the associated single linear elliptic PDE of divergence type (with variable co-
efficients) for a linear combination of u and v. Such combination represents a
real part of a quasiregular mapping and, therefore, admits only isolated criti-
cal points. We shall not go into their arguments in detail, but instead extract
the following p-harmonic analogue of the Radó-Kneser-Choquet Theorem.

Theorem 2.5 (G. Alessandrini and M. Sigalotti). Let U be a bounded Jor-
dan domain and h = u + iv : U → C be a continuous mapping whose coor-
dinate functions u, v ∈ W 1,p(U), 1 < p <∞, are p-harmonic. Suppose that

h : ∂U onto−→ γ is an orientation-preserving homeomorphism onto a convex
Jordan curve γ. Then

(i) h is a C∞-diffeomorphism from U onto the bounded component of C\γ.
In particular,

J(z, h) = |hz|2 − |hz̄|2 > 0 in U.

(ii) If, in addition, ∂U contains a C∞-smooth arc Γ ⊂ ∂U and h(Γ) is
a C∞-smooth subarc in γ, then h is C 1,α-regular up to Γ, for some
0 < α = α(p) < 1 (actually C∞). Moreover J(z, h) > 0 on Γ as well.

This theorem is a straightforward corollary of Theorem 5.1 in [3]. How-
ever, three remarks are in order.

(1) In their Theorem 5.1 the authors of [3] assume that U satisfies an
exterior cone condition. This is needed only insofar as to ensure
the existence of a continuous extension of a given homeomorphism
Φ: ∂U → γ into U whose coordinate functions are p-harmonic in
U. Obviously, such an extension is unique, though the p-harmonic
energy need not be finite. Once we have such a mapping the exterior
cone condition on U for the conclusion of Theorem 5.1 is redundant,
see Remark 3.2 in [3]. This is exactly the case we are dealing with
in Theorem 2.5.

(2) In regard to the statement (ii) we point out that in Theorem 5.1
of [3] the authors work with the mappings that are smooth up to the
entire boundary of U. Nonetheless their proof that J(z, h) > 0 on
∂U is local, so applies without any change to our case (ii).
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(3) Since J(z, h) > 0 in U up to the arc Γ ⊂ ∂U the coordinate functions
of h have nonvanishing gradient. This means that p-harmonic equa-
tion is uniformly elliptic up to Γ. Consequently, h is C∞-smooth on
U up to Γ.

2.3. The p-harmonic replacement. Let Ω be a bounded domain in R2 '
C. We consider a class A(Ω) = Ap(Ω), 1 < p <∞, of uniformly continuous
functions h = u+ iv : Ω→ C having finite p-harmonic energy and furnish it
with the norm

‖h‖Ap(Ω) = ‖h‖C (Ω) + ‖∇h‖L p(Ω).

The closure of C∞◦ (Ω) in Ap(Ω) will be denoted by Ap◦(Ω).

Proposition 2.6. Let U b Ω be a Jordan subdomain of Ω. There exists a
unique operator

RU : Ap(Ω)→ Ap(Ω)

(nonlinear if p 6= 2) such that for every h ∈ Ap(Ω)

RUh = h in Ω \ U
RU ∈ h+ W 1,p

◦ (U)

∆pRUh = 0 in U
(2.3)

(2.4) EΩ[RUh] 6 EΩ[h]

Equality occurs in (2.4) if and only if h is p-harmonic in U.

Proof. For h = u+ iv we define

RUh = RUu+ iRUv.

It is therefore enough to construct the replacement for real-valued functions.
For u ∈ Ap(Ω) real, we define

RUu =

{
u in Ω \ U
ũ in U

where ũ is determined uniquely as a solution to the Dirichlet problem{
div |∇ũ|p−2∇ũ = 0 in U
ũ ∈ u+ W 1,p

◦ (U)

so conditions (2.3) are fulfilled. That RUu is continuous in Ω is guaranteed
by Proposition 2.4. The solution ũ is found as the minimizer of the p-
harmonic energy in the class u+ W 1,p

◦ (U), so we certainly have

EΩ[RUu] 6 EΩ[u]

The same estimate holds for the imaginary part of h, so adding them up
yields

EΩ[RUh] 6 EΩ[h]. �

Remark 2.7. The reader may wish to know that the operator RU : A(Ω)→
A(Ω) is continuous, though we do not appeal to this fact.
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2.4. Smoothing along a crosscut. Consider a bounded Jordan domain
U and a C∞-smooth crosscut Γ ⊂ U with two distinct end-points in ∂U. By

definition, this means that there is a C∞-diffeomorphism ϕ : C onto−→ U such
that Γ = ϕ(R), and its distinct endpoints are given by

lim
x→−∞

ϕ(x) ∈ ∂U

lim
x→∞

ϕ(x) ∈ ∂U

Such Γ splits U into two Jordan subdomains

U+ = ϕ(C+), C+ = {z : Im z > 0}
U− = ϕ(C−), C− = {z : Im z < 0}.

Suppose we are given a homeomorphism f : U → C such that each of two
mappings

f : U+ → R2 and f : U− → R2

is C∞-smooth up to Γ. Assume that for some constant 0 < m <∞ we have

|Df(z)| 6 m and detDf(z) >
1

m

on U+ and on U−. Thus f : U→ R2 is in fact locally bi-Lipschitz.

Proposition 2.8. Under the above conditions there is a constant 0 < M <
∞ such that for every open set V ⊂ U containing Γ one can find a home-

omorphism g : U onto−→ f(U) which is a C∞-diffeomorphism in U, with the
following properties:

(2.5) g(z) = f(z), for z ∈ (U \ V) ∪ Γ

(2.6) |Dg(z)| 6M and detDg(z) >
1

M
on U.

The key element of this smoothing device is that the constant M is inde-
pendent of the neighborhood V of Γ, see Figure 1. The proof is given in [24]
following the ideas of [32].

We shall recall similar smoothing device for cuts along Jordan curves.
Let U be a simply connected domain with C∞-regular cut along a Jordan

curve Γ ⊂ U. This means there is a diffeomorphism ϕ : C onto−→ U such that
Γ = ϕ(S1), S1 = {z ∈ C : |z| = 1}. As before Γ splits U into

U+ = ϕ(D+), D+ = {z : |z| < 1}
U− = ϕ(D−), D− = {z : |z| > 1}.

Suppose we are given a homeomorphism f : U → R2 such that each of two
mappings

f : U+ → R2 and f : U− → R2
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Figure 1. Jordan domain with a crosscut Γ and its neigh-
borhood V.

is C∞-smooth up to Γ. Assume that for some constant 0 < m <∞ we have

|Df(z)| 6 m and detDf(z) >
1

m

on U+ and U−.

Proposition 2.9. Under the above conditions there is a constant 0 < M <
∞ such that for every open set V ⊂ U containing Γ one can find a C∞-

diffeomorphism g : U onto−→ f(U) with the following properties

(2.7) g(z) = f(z), for z ∈ (U \ V) ∪ Γ

(2.8) |Dg(z)| 6M and detDg(z) >
1

M
on U.

Having disposed of the above preliminaries we shall now proceed to the
construction of the approximating sequence of diffeomorphisms.

3. The proof

3.1. Scheme of the proof. Let us begin with a convention. We will often
suppress the explicit dependence on the Sobolev exponent 1 < p < ∞ in
the notation, whenever it becomes selfexplanatory. For every ε > 0 we shall

construct a C∞-diffeomorphism } : X onto−→ Y such that

(A) }− h ∈ A◦(X)

(B) ‖}− h‖C (X) 6 ε

(C) ‖∇}−∇h‖L p(X) 6 ε

(D) EX[}] 6 EX[h]
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(E) If h is a C∞-diffeomorphism outside of a compact subset of X, then
there exist a compact subset of X outside of which we have } ≡ h, for
all ε > 0.

We may and do assume that h is not a C∞-diffeomorphism, since other-
wise } = h satisfies the desired properties. Let x◦ ∈ X be a point such that
h fails to be C∞-diffeomorphism in any neighborhood of x◦.

We shall consider dyadic squares in Y with respect to a selected rectangu-
lar coordinate system in R2. By choosing the origin of the system we ensure
that h(x◦) does not lie on the boundary of any dyadic square.

Let us fix ε > 0. The construction of } proceeds in 5 steps, each of

which gives a homeomorphism }k : X onto−→ Y, k = 0, 1, . . . , 5, in the Sobolev
class W 1,p

loc (X,Y) such that }0 = h, }k ∈ }k−1 + A◦(X), k = 1, . . . , 5 and
}5 = } is the desired diffeomorphism. For each k = 1, 2, . . . , 5 we will secure
conditions analogous to (A)-(E). Namely,

(Ak) }k − }k−1 ∈ A◦(X)

(Bk) ‖}k − }k−1‖C (X) 6 ε/5

(Ck) ‖∇}k −∇}k−1‖L p(X) 6 ε/5

(Dk) ‖∇}1‖L p(X) 6 ‖∇}0‖L p(X) − 2δ, for some δ > 0;
‖∇}k‖L p(X) 6 ‖∇}k−1‖L p(X), for k = 2, 4;
‖∇}k‖L p(X) 6 ‖∇}k−1‖L p(X) + δ, for k = 3, 5

(Ek) If hk−1 is a C∞-diffeomorphism outside of a compact subset of X, then
there exists a compact subset in X outside which we have }k ≡ }k−1

for all ε > 0.

3.2. Partition of X into cells. Let us distinguish one particular Whitney
type partition of Y and keep it fixed for the rest of our arguments.

Y =
∞⋃
ν=1

Yν ,

where Yν are mutually disjoint open dyadic squares such that

diamYν 6 dist(Yν , ∂Y) 6 3 diamYν for ν = 1, 2, . . .

unless Y = R2, in which case Yν are unit squares. Thus the cover of Y by
Yν is locally finite. The preimages

Xν = h−1(Yν), ν = 1, 2, . . .

are Jordan domains which we call cells in X. In the forthcoming Step 1 we
shall need to further divide each cell into a finite number of daughter cells
in X. Note that all but finite number of cells Xν , ν = 1, 2, ... lie outside a
given compact subset of X.

Step 1

To avoid undue indexing in the forthcoming division of cells, we shall
argue in two substeps.
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Step 1a. Examine one of the cells in X, say X = Xν , for some fixed ν =
1, 2, . . . . Call it a parent cell. Thus h(X) = Υ is the corresponding Whitney
square Υ = Yν ⊂ Y. To every n = 1, 2, . . . , there corresponds a partition of
Υ into 4n-dyadic congruent squares Υi, i = 1, . . . , 4n

Υ = Υ1 ∪ · · · ∪Υ4n .

This gives rise to a division of X into daughter cells Xi = h−1(Υi)

X = X1 ∪ X2 ∪ · · · ∪ X4n .

We look at the homeomorphisms

h : Xi
onto−→ Υi, i = 1, 2, . . . 4n

By virtue of Proposition 2.6 we may replace them with p-harmonic homeo-
morphisms

h̃i = RXih : Xi
onto−→ Υi, i = 1, 2, . . . , 4n

which coincide with h on ∂Xi. This procedure may not be necessary if
h : Xi → Υi is already a C∞-diffeomorphism. In such cases we always use

the trivial replacement h̃i = h. After all such replacements are made, we
arrive at a homeomorphism

h̃ : X onto−→ Υ

which is a C∞-diffeomorphism in each cell Xi and coincides with h on ∂Xi.
Obviously,

h̃ = h+
4n∑
i=1

[h̃i − h]◦ ∈ h+A◦(X)

where [h̃i−h]◦ stands for zero extension of h̃i−h outside Xi and, therefore,
belongs to A◦(Xi). Furthermore, by principle of minimal p-harmonic energy,
we have

EX[h̃] =
4n∑
i=1

EXi [h̃i] 6
4n∑
i=1

EXi [h] = EX[h].

The eventual aim is to fix the number of daughter cells in X. For this we
vary n and look closely at the resulting homeomorphisms, denoted by fn.
This sequence of mappings is bounded in A(X). It actually converges to
h uniformly on X. Indeed, given any point x ∈ X, say x ∈ Xi, for some
i = 1, 2, . . . , 4n, we have

|fn(x)− h(x)| = |h̃i(x)− h(x)| 6 diam Υi = 2−n diam Υ.

Thus
lim
n→∞

fn = h, uniformly in X.

On the other hand the mappings fn are bounded in the Sobolev space
W 1,p(X), so converge to h weakly in W 1,p(X). The key observation now
is that

‖∇h‖L p(X) 6 lim inf
n→∞

‖∇fn‖L p(X) 6 ‖∇h‖L p(X)
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because of convexity of the energy functional. This gives

lim
n→∞

‖∇fn‖L p(X) = ‖∇h‖L p(X)

Then, the usual application of Clarkson’s inequalities in L p-spaces, 1 < p <
∞, yields

lim
n→∞

‖∇fn −∇h‖L p(X) = 0

meaning that fn − h → 0 in the norm topology of A(X). We can now
determine the number n = nν = n(X), simply requiring the division of X be
fine enough to satisfy two conditions.

(3.1)

{
diam Υi = 2−n diam Υ 6 ε/5, i = 1, . . . , 4n

‖∇fn −∇h‖L p(X) 6
ε

5·2ν

where we recall that X stands for Xν .

Step 1b. Now, having n = nν fixed for each cell Xν , we construct our first
approximating mapping

}1 : X onto−→ Y
by setting

}1 := h+
∞∑
ν=1

[fnν − h]◦ ∈ h+A◦(X)

where, as always, [fnν − h]◦ stands for the zero extension of fnν − h outside
Xν . This mapping is a C∞-diffeomorphism in every daughter cell. Clearly,
we have the condition

(A1) }1 − h ∈ A◦(X).

Moreover, by the condition in (3.1) imposed on every nν ,

(B1) ‖}1 − h‖C (X) 6 sup
ν=1,2,...

{diam Υi : Υi ⊂ Yν , i = 1, . . . , 4nν} 6 ε

5

and

(C1) ‖∇}1 −∇h‖pL p(X) =
∞∑
ν=1

‖∇}1 −∇h‖pL p(Xν) 6
( ε

5

)p ∞∑
ν=1

1

2νp
<
( ε

5

)p
.

Regarding condition (D1), we observe that summing up the energies over
all daughter cells Xi ⊂ Xν , i = 1, 2, . . . 4nν and ν = 1, 2, . . . , gives the total
energy of }1 not larger than that of h. Even more, since h fails to be a C∞-
diffeomorphism in at least one of these cells, the p-harmonic replacement
takes place in this cell and, consequently, }1 has strictly smaller energy.
Hence

(D1) ‖∇}1‖L p(X) 6 ‖∇h‖L p(X) − 2δ, for some δ > 0.

Regarding condition (E1), we note that under the assumption therein we
made only a finite number of nontrivial (p-harmonic) replacements. The
same remark will apply to the subsequent steps and will not be mentioned
again. The step 1 is complete.
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Before proceeding to Step 2, let us put all daughter cells in X in a single
sequence

X1,X2, · · · ⊂ X.
Thus from now on the daughter cells from different parents are indistin-
guishable as far as the mapping }1 is concerned. The point is that }1 is a
C∞-diffeomorphism in every such cell, a property that will be pertinent to
all new cells coming later either by splitting or merging the existing cells.
Note that the images Υα = h(Xα), α = 1, 2, . . . , form a partition of Y into
dyadic squares

Y =
∞⋃
α=1

Υα, where diam Υα 6
ε

5
.

Figure 2. }1 is a C∞-diffeomorphism in each cell Xα ⊂ X.

Step 2

Step 2a. (Adjacent cells) Let C(Y) ⊂ Y be the collection of all corners
of dyadic squares Υα, α = 1, 2, . . . , and V(X) ⊂ X denote the set of their
preimages under h, called vertices of cells. Whenever two closed cells Xα

and Xβ, α 6= β, intersect, their common part is either a point in V(X) or
an edge, that is, a closed Jordan arc with endpoints in V(X). In this latter
case we say that Xα and Xβ are adjacent cells with common edge

Cαβ = Xα ∩ Xβ.

This is the closure of a Jordan open arc Cαβ = Cαβ \ V(X). The mappings

}1 : Xα onto−→ Υα and }1 : Xβ onto−→ Υβ

are C∞-diffeomorphisms but they do not necessarily match smoothly along
the edges. We shall now produce a new cell Xαβ, a daughter of the adjacent
cells Xα and Xβ, such that

Cαβ ⊂ Xαβ ⊂ Xα ∪ Cαβ ∪ Xβ.
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To construct Xαβ we look at the adjacent dyadic squares Υα and Υβ in

Y. The intersection Υα ∩ Υβ = h(Cαβ) is a closed interval. Let R be a
number greater than the length of h(Cαβ) to be chosen sufficiently large
later on. There exist exactly two open disks of radius R for which h(Cαβ) is
a chord. Their intersection, denoted by Lαβ, is a symmetric doubly convex
lens of curvature R−1. Thus Lαβ is enclosed between two open circular arcs
γαβ = Υα∩∂Lαβ ⊂ Υα and γβ α = Υβ∩∂Lαβ ⊂ Υβ. Note that Lαβ = Lβ α,
but γαβ 6= γβ α. We call

(3.2) Xαβ = }−1
1 (Lαβ), a daughter of the adjacent cells Xα and Xβ.

As the curvature of the lens Lαβ approaches zero, the area of Xαβ tends to
0. This allows us to choose R so that

(3.3) ‖∇}1‖L p(Xαβ) 6
ε

5 · 2α+β
.

The lenses Lαβ are disjoint because the opening angle of each lens (the
angle between arcs at their common endpoints) is at most π/3 and their
long axes are either parallel or orthogonal, see Figure 3. Therefore, the
cells Xαβ = }−1

1 (Lαβ) are also disjoint. However, their closures may have a
common point that lies in V(X). The boundary of Xαβ consists of two open
arcs

Γαβ = Xα ∩ ∂Xαβ and Γβ α = Xβ ∩ ∂Xαβ

plus their endpoints. These open arcs are C∞-smooth because they come as
images of the circular arcs enclosing the lens Lαβ under a C∞-diffeomorphism.

Figure 3. Lenses.

Remark 3.1. In what follows we shall consider only the pairs (α, β) of indices
α = 1, 2, . . . and β = 1, 2, . . . which correspond to adjacent cells. Such pairs
will be designated the symbol αβ.
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Step 2b. (Replacements in Xαβ) The lenses Lαβ ⊂ Y are convex, so with
the aid of Proposition 2.6 and Theorem 2.5, we may replace }1 : Xαβ → Lαβ
with the p-harmonic extension of }1 : ∂Xαβ → ∂Lαβ. We do this, and denote

the result by }αβ2 : Xαβ → Lαβ, only on the cells in which }1 : Xα∪Xβ∪Xαβ →
R2 is not a C∞-diffeomorphism. In other cells we set }αβ2 = }1. In either

case }αβ2 ∈ }1 +A◦(Xαβ) so we define

}2 = }1 +
∑
αβ

[}αβ2 − }1]◦.

Thus we have

(A2) }2 − }1 ∈ A◦(X).

The advantage of using }2 in the next step lies in the fact that it is not only
a C∞-diffeomorphism in every cell, but also is C∞-smooth with positive
Jacobian determinant, up to each edge of the cells created here. These edges
are C∞-smooth open arcs. By cells created here we mean not only Xαβ

but also those obtained from the parent cell Xα by removing the adjacent
daughters; that is,

Xα \
⋃
αβ

Xαβ, α = 1, 2, . . .

See Figure 4. The estimates of }2 run as follows. By (3.1) we have,

(B2) ‖}2 − }1‖C (X) 6 sup
αβ
{diamLαβ} 6 sup

α
{diamYα} 6 ε

5
.

In view of the minimum p-harmonic energy principle, we have

‖∇}2 −∇}1‖Lp(X) =
∑
αβ

‖∇}2 −∇}1‖Lp(∪Xαβ)

6
∑
αβ

[
‖∇}2‖Lp(Xαβ) + ‖∇}1‖Lp(Xαβ)

]
6 2

∑
αβ

‖∇}1‖Lp(Xαβ) 6
2ε

5

∑
αβ

2−α−β.

by (3.3). Hence

(C2) ‖∇}2 −∇}1‖Lp(X) 6
ε

5
.

The minimum energy principle also yields estimate

‖∇}2‖pLp(X) = ‖∇}2‖pLp(∪Xαβ)
+ ‖∇}1‖pLp(X\∪Xαβ)

6 ‖∇}1‖pLp(∪Xαβ)
+ ‖∇}1‖pLp(X\∪Xαβ)

= ‖∇}1‖pLp(X).

In particular

(D2) ‖∇}2‖Lp(X) 6 ‖∇}1‖Lp(X),

completing the proof of Step 2.
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Figure 4. Three types of cells.

Note that }2 is locally bi-Lipschitz in X\V(X). The exceptional set V(X)
is discrete.

Step 3

We shall now merge all the adjacent cells together, by smoothing }2

around the edges Γαβ ⊂ Xα. To achieve proper estimates we need to re-
move small neighborhoods of all vertices, outside which }2 is certainly locally
bi-Lipschitz.

Step 3a. First we cover the set C(Y) of corners of dyadic squares by disks
Dc centered at c ∈ C(Y). These disks will be chosen small enough to satisfy
all the conditions listed below.

(i) diamDc < ε/5 for every c ∈ C(Y),

(ii)
∑

v∈V(X)

∫
Fv
|∇}2|p 6

(
ε

20

)p
, where Fv = }−1

2 (Dc), c = }2(v) = h(v).

Denote by X◦ = X\
⋃

Fv. We truncate each edge Γαβ near the endpoints
by setting

(3.4) Γαβ◦ = Γαβ ∩ X◦.
These are mutually disjoint open arcs; their closures are isolated continua
in X \ V(X). This means that there are disjoint neighborhoods of them. We

are actually interested in neighborhoods Uαβ ⊂ Xα of Γαβ◦ that are Jordan

domains in which Γαβ◦ ⊂ Uαβ are C∞-smooth crosscuts with two endpoints
in ∂Uαβ, see Section 2. It is geometrically clear that such mutually disjoint
neighborhoods exist. Now the stage for next substep is established.

Step 3b. (C∞-replacement within Uαβ) It is at this stage that we will
improve }2 in Uαβ to a C∞-smooth diffeomorphism with no harm to the
previously established estimates for }2. The tool is Proposition 2.8. As
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always, we shall make no replacement of }2 : Uαβ → Υα if it is already C∞-
diffeomorphism. Recall that we have a bi-Lipschitz mapping }2 : Uαβ →
}2(Xα) = Υα that takes the crosscut Γαβ◦ ⊂ Uαβ onto a circular arc. Denote

the components Uαβ+ = Uαβ \ Xαβ and Uαβ− = Uαβ ∩ Xαβ. Furthermore, we
have

|D}2| 6 mαβ and detD}2 >
1

mαβ
, for some mαβ > 0

on each component. The mappings }2 : Uαβ+ → Υα and }2 : Uαβ− → Υα are

C∞-diffeomorphisms up to Γαβ◦ . In accordance with Proposition 2.8 we find
a constant Mαβ such that: whenever open set Vαβ ⊂ Uαβ contains the

crosscut Γαβ◦ there exists a homeomorphism }αβ3 : Uαβ onto−→ }2(Uαβ) which
is a C∞-diffeomorphism in Uαβ, with the following properties

• }αβ3 ≡ }2 on (Uαβ \ Vαβ) ∪ Γαβ◦ ;

• |∇}αβ3 | 6Mαβ and det∇}αβ3 > 1
Mαβ

in Uαβ.

Since Mαβ does not depend on Vαβ it will be advantageous to take neigh-

borhoods Vαβ of Γαβ◦ thin enough to satisfy

• Vαβ ⊂ Uαβ ∪ Γαβ◦ ;

• |Vαβ| 6 1
5p·2α+β

[
ε

mαβ+Mαβ

]p
and also |Vαβ| 6 δ

2α+βMαβ
.

Note that }αβ3 , }2 ∈ W 1,∞(Uαβ) ⊂ W 1,p(Uαβ) and }αβ3 = }2 on ∂Uαβ, so
we have

}αβ3 − }2 ∈ W 1,p
◦ (Uαβ).

Step 3c. We now define a homeomorphism }3 : X onto−→ Y by the rule

}3 =

}αβ3 in Uαβ

}2 in X \
⋃
αβ

Uαβ.

Obviously, }3 is a C∞-diffeomorphism in X◦ and }3− }2 ∈ W 1,p
◦ (X◦). Since

}3 coincides with }2 outside X◦ we have }3 = }2 + [}3 − }2]◦. Hence

(A3) }3 − }2 ∈ A◦(X).

Then, for every x ∈ X,

|}3(x)− }2(x)| 6

{
diam }2(Uαβ), for x ∈ Uαβ

0, otherwise
6 diam Υα 6

ε

5

meaning that

(B3) ‖}3 − }2‖C (X) 6
ε

5
.
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The computation of p-norms goes as follows

‖∇}3 −∇}2‖pL p(X) =
∑
αβ

∫
Vαβ
|∇}3 −∇}2|p

6
∑
αβ

|Vαβ|
[
‖∇}3‖C (Vαβ) + ‖∇}2‖C (Vαβ)

]p
6
∑
αβ

|Vαβ| (mαβ +Mαβ)p 6
∑
αβ

εp

5p 2α+β
6
( ε

5

)p
.

Hence

(C3) ‖∇}3 −∇}2‖L p(X) 6
ε

5
.

In the finite energy case, when ‖∇}2‖L p(X) <∞, we observe that

‖∇}3‖L p(X\∪Vαβ) = ‖∇}2‖L p(X\∪Vαβ) 6 ‖∇}2‖L p(X).

Therefore, by triangle inequality,

‖∇}3‖L p(X) 6 ‖∇}2‖L p(X) +
∑
αβ

‖∇}3‖L p(Vαβ)

6 ‖∇}2‖L p(X) +
∑
αβ

|Vαβ| · ‖∇}3‖C (Vαβ)

6 ‖∇}2‖L p(X) +
∑
αβ

δ

2α+βMαβ
·Mαβ

which yields

(D3) ‖∇}3‖L p(X) 6 ‖∇}2‖L p(X) + δ.

The third step is completed.

Step 4

We have already upgraded the mapping h to a homeomorphism }3 : X onto−→
Y that is a C∞-diffeomorphism in X◦ = X \

⋃
v∈V(X) Fv, where Fv are small

surroundings of the vertices of cells. Their images }3(Fv) = }2(Fv) = Dc are
small disks centered at c = h(v). In Step 3a, one of the preconditions on
those disks was that diamDc < ε/5. Furthermore, the closed disks Dc are
isolated continua in Y for all c ∈ C(Y), so are the sets Fv in X. We shall now
consider slightly larger concentric open disks D′c ⊃ Dc, c ∈ C(Y), and their
preimages F′v = h−1

3 (D′c) ⊂ X, v = h−1(c) ∈ V(X). The annulus D′c \ Dc will
be thin enough to ensure that D′c are still disjoint,

diamD′c <
ε

5
for all c ∈ C(Y)

and ∑
v∈V(X)

‖∇}3‖pLp(F′
v\Fv) 6

( ε
20

)p
.
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Figure 5. Neighborhoods of vertices.

Let Γ′v, v ∈ V(X), denote the boundary of F′v. These are C∞-smooth

Jordan curves. We now define a homeomorphism }4 : X onto−→ Y by perform-

ing p-harmonic replacement of mappings }3 : F′v
onto−→ D′c, whenever such a

mapping fails to be C∞-diffeomorphism. Thus every }4 : F′v
onto−→ D′c is a

C∞-diffeomorphism up to Γ′v. Moreover }4 ∈ }3 + W 1,p
◦ (F′c), so

(A4) }4 − }3 ∈ A◦(X).

For every x ∈ X, we have

|}4(x)− }3(x)| 6

{
diamD′c in F′v, c = h(v)

0 otherwise
6
ε

5
.

Hence

(B4) ‖}4 − }3‖C (X) 6
ε

5
.
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By virtue of the minimum energy principle we compute the p-norms

‖}4 − }3‖pL p(X) =
∑

v∈V(X)

‖}4 − }3‖pL p(F′
v)

6
∑

v∈V(X)

[
‖}4‖L p(F′

v) + ‖}3‖L p(F′
v)

]p
6 2p

∑
v∈V(X)

‖}3‖pL p(F′
v)

6 22p−1
∑

v∈V(X)

[
‖}3‖pL p(F′

v\Fv) + ‖}3‖pL p(Fv)

]

6 22p−1

( ε
20

)p
+
∑

v∈V(X)

‖}2‖pL p(Fv)


6 22p

( ε
20

)p
=
( ε

5

)p
.

Hence

(C4) ‖}4 − }3‖L p(X) 6
ε

5
.

Again by minimum energy principle we find that

(D4) ‖}4‖pL p(X) 6 ‖}3‖pL p(X).

Just as in the previous steps, condition (E4) remains valid, finishing Step 4.

Step 5

The final step consists of smoothing }4 in a neighborhood of each smooth
Jordan curve Γ′v, v ∈ V(X). We argue in much the same way as in Step 3,
but this time we appeal to Proposition 2.9 instead of Proposition 2.8. By
smoothing }4 in a sufficiently thin neighborhood of each Γ′v we obtain a

C∞-diffeomorphism }5 : X onto−→ Y,

(A5) }5 − }4 ∈ A◦(X).

(B5) ‖}5 − }4‖C (X) 6
ε

5
.

(C5) ‖}5 − }4‖L p(X) 6
ε

5
.

(D5) ‖}5‖L p(X) 6 ‖}4‖L p(X) + δ. �
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4. Open questions

Question 4.1. Does Theorem 1.1 extend to n = 3?

Question 4.2. A bi-Sobolev homeomorphism h : X onto−→ Y is a mapping

of class W 1,p(X,Y), 1 6 p < ∞, whose inverse h−1 : Y onto−→ X belongs to
a Sobolev class W 1,q(Y,X), 1 6 q < ∞. Can h be approximated by bi-
Sobolev diffeomorphisms {h`} so that h` → h in W 1,p(X,Y) and h−1

` → h−1

in W 1,q(Y,X)?
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25 (2008), no. 1, 201–213.
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