595 research outputs found

    Effective Disaster Management by Efficient Usage of Resources

    Full text link
    Disaster Management can be merely defined as the organization and management of resources and responsibilities for dealing with all humanitarian aspects of crises, in specific preparedness, rejoinder and recapture in order to diminish the influence of disasters. But the affects of the disaster increases only when the information about the disaster is unknown and when the resources for the disaster management is not correctly used. Now there are several methods for forecast the disaster, But there are no any effective methods for handling the resources needed for both managing the disaster and also for rehabilitation purpose. Thus this paper proposes an application used for managing the disaster and handling the rehabilitation process. This application which deals with almost all the resources those are required for the management of disaster. This proposed application which is based on java programming language. This project also has a great scope of enhancement in future

    Comprehensive Structure and Functional Adaptations of the Yeast Nuclear Pore Complex [preprint]

    Get PDF
    Nuclear Pore Complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the yeast NPC in which the inner ring is resolved by cryo-EM at - helical resolution to show how flexible connectors tie together different structural and functional layers in the spoke. These connectors are targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and karyopherins have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We also provide evidence for three major NPC variants that foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies to provide a comprehensive model of the in situ NPC with a radially-expanded inner ring. Our model reveals novel features of the central transporter and nuclear basket, suggests a role for the lumenal ring in restricting dilation and highlights the structural plasticity required for transport by the NPC

    A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    Get PDF
    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm[superscript 2] 2-terminal monolithic perovskite/silicon multijunction solar cell with a V [subscript OC] as high as 1.65 V. We achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.Bay Area Photovoltaic Consortium (Contract DE-EE0004946)United States. Dept. of Energy (Contract DE-EE0006707

    Immunogenicity and protective efficacy of the Mycobacterium avium subsp. paratuberculosis attenuated mutants against challenge in a mouse model

    Get PDF
    Johne’s disease (JD), caused by Mycobacterium avium subsp. paratuberculosis (MAP), results in serious economic losses worldwide especially in cattle, sheep and goats. To control the impact of JD on the animal industry, an effective vaccine with minimal adverse effects is urgently required. In order to develop an effective vaccine, we used allelic exchange to construct three mutant MAP strains, leuD, mpt64 and secA2. The mutants were attenuated in a murine model and induced cytokine responses in J774A.1 cell. The leuD mutant was the most obviously attenuated of the three constructed mutant strains. Our preliminary vaccine trial in mice demonstrated different levels of protection were induced by these mutants based on the acid-fast bacilli burden in livers and spleens at 8 and 12 weeks post challenge. In addition, vaccination with leuD mutant induced a high level of IFN- production and significant protective efficacy in both the reduction of inflammation and clearance of acid-fast bacilli, as compared with the mock vaccinated group

    A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens

    Get PDF
    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a "creeping window" strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes

    Local Genealogies in a Linear Mixed Model for Genome-Wide Association Mapping in Complex Pedigreed Populations

    Get PDF
    INTRODUCTION: The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both family-based and population-based samples, and can be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called 'GENMIX (genealogy based mixed model)' which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA. SUBJECTS AND METHODS: We validated GENMIX using genotyping data of Danish Jersey cattle and simulated phenotype and compared to the MMA. We simulated scenarios for three levels of heritability (0.21, 0.34, and 0.64), seven levels of MAF (0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45) and five levels of QTL effect (0.1, 0.2, 0.5, 0.7 and 1.0 in phenotypic standard deviation unit). Each of these 105 possible combinations (3 h(2) x 7 MAF x 5 effects) of scenarios was replicated 25 times. RESULTS: GENMIX provides a better ranking of markers close to the causative locus' location. GENMIX outperformed MMA when the QTL effect was small and the MAF at the QTL was low. In scenarios where MAF was high or the QTL affecting the trait had a large effect both GENMIX and MMA performed similarly. CONCLUSION: In discovery studies, where high-ranking markers are identified and later examined in validation studies, we therefore expect GENMIX to enrich candidates brought to follow-up studies with true positives over false positives more than the MMA would

    Design and synthesis of novel quercetin metal complexes as IL-6 inhibitors for anti-inflammatory effect in SARS-CoV-2

    Get PDF
    One of the most common causes of mortality in COVID-19 patients is cytokine release syndrome (CRS). Though several cytokines are involved in CRS, the role of Interleukin 6 is significant. Considering the importance of IL-6 inhibition and the drawbacks of the existing monoclonal antibodies, the present study develops new flavonoid metal complexes as immune boosters targeting IL-6 for SARS-CoV-2 treatment. To identify the potential flavonoids from 152 secondary plant metabolites, PyRx 0.9 tool has been used. The top scorer quercetin was converted into quercetin-oxime. Seven metal complexes (QM-1 to QM-7) were made from quercetin-oxime by utilizing divalent metals such as zinc, copper, magnesium, cobalt, barium, and cadmium. It was assumed that all compounds were moderately soluble and would not penetrate the BBB through in silico ADME studies. However, the in vitro heamolytic research revealed a modest heamolytic effect in all seven complexes. To know the IL-6 inhibitory potential preliminary level, the complexes were screened for cytotoxicity in cell lines MCF-7 which predominantly expresses the IL-6 level. The cytotoxic effects of all complexes were considerable relative to the marketable Nutridac formulation. The complexes quercetin-Zinc (QM1) and quercetin-Zinc-Ascorbic acid (QM7) showed significant cytotoxicity on MCF-7 compared to Nutridac and no cytotoxic toward the normal cell lines

    Evidence for Pervasive Adaptive Protein Evolution in Wild Mice

    Get PDF
    The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans
    corecore