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a  b  s  t  r  a  c  t

Johne’s  disease  (JD),  caused  by Mycobacterium  avium  subsp.  paratuberculosis  (MAP),  results  in serious
economic  losses  worldwide  especially  in  cattle,  sheep  and goats.  To  control  the  impact  of  JD  on the  animal
industry, an  effective  vaccine  with  minimal  adverse  effects  is urgently  required.  In order  to  develop  an
effective  vaccine,  we  used  allelic  exchange  to construct  three  mutant  MAP  strains,  leuD,  mpt64  and  secA2.
The  mutants  were  attenuated  in a murine  model  and  induced  cytokine  responses  in J774A.1  cell.  The
leuD  mutant  was  the  most  obviously  attenuated  of the  three  constructed  mutant  strains.  Our  preliminary
vaccine  trial in  mice  demonstrated  different  levels  of protection  were  induced  by  these  mutants  based  on
the acid-fast  bacilli  burden  in  livers  and  spleens  at 8 and  12  weeks  postchallenge.  In  addition,  vaccination
with  leuD  mutant  induced  a  high  level  of  IFN-� production  and  significant  protective  efficacy  in  both
the  reduction  of  inflammation  and  clearance  of  acid-fast  bacilli,  as  compared  with  the mock  vaccinated
group.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The hallmark of Johne’s disease (JD), caused by Mycobac-
terium avium subsp. paratubculosis (MAP) infection in ruminants, is
chronic granulomatous enteritis that leads to diarrhea and, even-
tually, death [1–3]. JD is highly prevalent not only in the United
States, but also worldwide. The estimated annual loss caused by JD
for the dairy industry in the United States alone is more than $220
million [4,5]. Calves are infected by ingesting MAP  shed in the feces
of cattle that are in the preclinical or clinical phase of the disease.
The elimination of MAP  bacteria from the environment is very dif-
ficult and thus, an effective vaccine would be extremely beneficial
in the control of JD in herds.

The currently available JD vaccine for animal use consists of
killed MAP  bacteria in an oil suspension. Although the killed
bacteria elicit protective immunity in animals against MAP  infec-
tion, protection is incomplete and varies widely depending on
vaccination protocols. The recent availability of an annotated
whole genomic sequence of the MAP  K-10 strain has led to

∗ Corresponding author. Tel.: +1 607 253 3675; fax: +1 607 253 3943.
E-mail address: yc42@cornell.edu (Y.-F. Chang).

significant advances in knowledge of MAP  gene regulation in
bacterial metabolism [6].  Comparative genomic approaches with
MAP  and Mycobacterium tuberculosis (MTB) have also led to the
identification of homologous genes involved in pathogenesis and
conserved metabolic pathways.

We  previously reported the results of MAP  subunit vaccine tri-
als in mice, goats, and calves [7–11]. Unfortunately, the cost of
expression and purification of recombinant proteins and adjuvants
necessary to manufacture subunit vaccines precludes their use in
food animals. Therefore, we  conducted further studies aimed at
identifying efficacious yet cost effective vaccines in order to pro-
vide herd managers additional tools to control JD. Several attempts
have been made to develop attenuated mutants as live vaccine can-
didates for JD [12,13].  In the present study, we constructed three
MAP  mutant strains, leuD, mpt64,  and secA2 using wild type MAP  K-
10. The leuD gene encodes isopropylmalate isomerase, an enzyme
involved in leucine biosynthesis. The auxotroph leuD mutant of
Mycobacterium bovis-derived bacillus Calmette Guérin (BCG) is
unable to grow in macrophages and is cleared within 7 weeks
from the lungs and spleen [14,15].  Although the leuD mutant does
not provide better protection than BCG, it still induces immunity
against MTB  bacteria in BALB/c mice [16]. In addition, the M.  bovis
leuD mutant induces highly significant protective immunity against
a virulent M. bovis strain in cattle [17]. Because the MAP  bacterium
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is closely related to the MTB  bacterium, it is reasonable to hypoth-
esize that the MAP  leuD mutant would also provide protective
immunity against MAP  infection.

The mpt64 gene encodes the immunogenic secreted protein
mpt64, which is involved in apoptosis of multinucleated giant cells
(MGCs) [18,19]. Expression of mpt64 in MTB  granulomas is neg-
atively correlated to apoptosis; hence Mpt64 may  play a role in
the persistence of Mycobacterium infected macrophages and mpt64
mutants may  be defective and unable to escape from host immune
responses [18,19].  The secA2 gene encodes one small component
of the Sec-dependent protein secretion pathway in Mycobacterium.
Studies of MTB  secA2 deletion mutants indicate SecA2 is required
for the secretion of some anti-oxidation proteins such as SodA and
KatG [20,21]. Further, the MTB  secA2 mutant is attenuated in SCID
mice [20], and enhances apoptosis of infected macrophages [21].
Vaccination of mice and guinea pigs with an MTB  secA2 mutant
significantly increases resistance to MTB  challenge compared with
BCG vaccination [21]. Hence, the secA2 MAP  mutant is another
potential vaccine candidate against MAP  infection.

In this report, we describe the pathogenicity and protective effi-
cacy of three MAP  deletion mutants in C57BL/6 mice. The results
showed that all three mutants were removed effectively from the
liver and spleen whereas unvaccinated control mice could not
remove the MAP  K-10 strain effectively. Moreover, all mutants
were able to induce protective immunity when vaccinated mice
were challenged with a virulent MAP  strain. Among the three
mutant strains, leuD was associated with lower lesion severity, and
mycobacteria were eliminated more effectively. In addition, the
leuD mutant also induced higher IFN-� levels and provided better
protective immunity against MAP  infection.

2. Materials and methods

2.1. Bacterial strains and culture methods

Liquid cultures of MAP  K-10 strain (ATCC, Manassas, VA), and
MAP clinical isolate strain 66115-98 were grown in Middlebrook
7H9 broth (BD, Sparks, MD)  supplemented with 0.24% glycerol,
0.05% Tween 80, 1.2 mg/ml  casitone (BD), 1.25 mg/l mycobactin
J (Allied Monitor, Inc., Fayette, MO), and 10% Middlebrook OADC
Enrichment (BD). Solid cultures were grown on 7H10 agar supple-
mented as described above. leuD, mpt64,  and secA2 mutants were
cultured on 7H9 broth with 75 �g/ml hygromycin B (HygB). All
broth cultures were grown at 37 ◦C in T75 tissue culture flasks.
Before challenge, the optical density of the bacterial cultures was
checked and the bacterial cells were harvested by centrifugation at
1500 × g for 10 min. After washing with the same volume of PBS,
the cells were resuspended in an appropriate volume of PBS buffer.

2.2. Plasmid construction, allelic replacement

The three deletion strains were constructed as previously
described [22–24].  The primers used to construct the allelic
exchange substrate (AES) of leuD, mpt64,  and secA2 genes are shown
in Table 1. The primer pairs were designed using the MAP  K-10
genome sequence database to amplify the upstream and down-
stream fragments from K-10 genomic DNA. After digesting with
appropriate enzymes, both fragments were cloned into pYUB854
on either side of the HygB resistance (Hygr) cassette to generate the
AES [25]. The pYUB854 plasmid containing the AES was digested
with PacI and ligated with plasmid phAE87. The resulting plasmid
was packaged with in vitro �-packaging extract (Gigapack III-XL;
Stratagene), and incubated with E coli HB101 on a low-salt LB agar
plate containing 100 �g/ml of HygB. The pooled phAE87-AES plas-
mid  DNA was prepared from Hygr colonies and electroporated into

Table 1
Primers used in this study.

Primer Sequence

leuD 5′ flanking forward CTGAGATCTTCAAGACGATGGCGGTCAACGTCGAC
leuD 5′ flanking reverse CTACTCGAGCTCATCCCTTCACGGTCGAATACGTC
leuD 3′ flanking forward GACTCTAGAAGCGACGTATCCCGATTGGAAACCG
leuD 3′ flanking reverse GTCGGTACCAGGACGTGCTCTGCCTACTTGCGG
mpt64 5′ flanking forward CTGAGATCTCCACCGACCCGGCGGTGTCGCAGGAC
mpt64 5′ flanking reverse CTACTCGAGGCGCATGTTGGATCCCTCCCCGAGG
mpt64 3′ flanking forward GACTCTAGAAGGTGAGTGGGTGCCCGATGGTGGTGG
mpt64 3′ flanking reverse GTCGGTACCGACTGGCCGAACTTCTCGCCCAGACC
secA2 5′ flanking forward CTGAGATCTCGCCGACCATCCGCTGGCCTTCTCC
secA2 5′ flanking reverse CTACTCGAGCACAGGTCAACGGTACCGGTGGGGCG
secA2 3′ flanking forward GACTCTAGACGCTAGCCGGTGCGCGGCCAGCCGCG
secA2 3′ flanking reverse GTCGGTACCCGCCGCGGCGTAGCCGGGATCCAGATG
leuD 5′ checking TGCTGGCCACCCAGACGTTGCCGC
leuD 3′ checking GCCGGCCGAAGGGTATTCGTGTC
mpt64 5′ checking CCAAGCTGGCCAACAACGCGATC
secA2 5′ checking AACTGGCCATCCCGGTGCTGATG
il12b RT forward primer ACCCTGCCCATTGAACTG
il12b RT reverse primer CTTCAAAGGCTTCATCTGCAAG

Mycobacterium smegmatis mc2 155 to generate the phage particle.
After incubation at the permissive temperature (30 ◦C) for 3 days,
several plaques were picked up for amplification on a 7H10 plate.
The high-titer transducing mycobacteriophages were prepared by
washing the amplified plaques with MP  buffer (50 mM Tris–HCl pH
7.6, 150 mM NaCl, 10 mM  MgSO4, 2 mM CaCl2).

MAP  K-10 was  cultured in 40 ml  of 7H9 broth medium in a T75
tissue culture flask until the OD600 was  0.6–0.8. The culture was
removed to a 50-ml tube and allowed to stand for 10 min  to deposit
large clumps of bacteria by gravity. Thirty-five milliliters of the top
layer of the culture was  then removed into a new 50-ml tube and
centrifuged at 1500 × g for 10 min. The bacterial pellet was resus-
pended in an equal volume of MP  buffer and centrifuged again to
remove residual Tween 80. The pellet was resuspended carefully
in 1/10 of the original volume in MP  buffer. Equal volumes of high-
titer mycobacteriophage stock and bacterial cells were mixed in a
2-ml screw cap tube and incubated at 37 ◦C for 4–6 h. The mixture
was added to 2 ml  of 7H9 broth medium containing casitone (BD),
cultured at 37 ◦C for an additional 48 h for recovery, and the cells
were then harvested by centrifugation at 2000 × g for 10 min. The
pellet was resuspended with 1 ml  7H9 medium and each 200 �l
of the resuspended cultures was then plated on 7H10 medium
with 75 �g/ml HygB. After 6 weeks of incubation, 20 colonies were
selected for analysis; the genomic DNA of colonies containing the
Hyg resistance cassette was  prepared for PCR reaction and DNA
sequencing in order to confirm allelic exchange.

2.3. Mice

Female C57BL/6 mice 6–8 weeks old were purchased from
Taconic (Germantown, NY). The animals were housed in a bio-
safety level II facility with free access to feed and water. All of the
experimental work was conducted in compliance with the regula-
tions, policies, and principles of the Animal Welfare Act, the Public
Health Service Policy on Humane Care and Use of Laboratory Ani-
mals used in Testing, Research, and Training, the NIH Guide for
the Care and Use of Laboratory Animals and the New York State
Department of Public Health.

2.4. Cell line culture, infection, RNA purification, and qRT-PCR of
IL6, IL12b and IL10

J774A.1 murine macrophage cell line was  purchased from ATCC.
The cells were routinely grown in DMEM supplemented with
10% FBS, penicillin-G (100 units/ml), and streptomycin sulfate
(100 mg/ml). J774A.1 cells grown in 24-well tissue culture plates
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were infected with mycobacterial strains, at a 30:1 multiplicity of
infection (MOI). After 4 h, the infection was terminated by wash-
ing cells two times with PBS to remove extracellular mycobacteria.
The cells were grown in DMEM supplemented with 10% FBS, Gen-
tamicin (50 �g/ml) for an additional 48 h. After treating with 5×
volume of RNAprotect Cell Reagent (Qiagen), three wells of cells
with the same treatment were pooled together for preparation
of total RNA using RNeasy Plus Mini Kit (Qiagen). High quality
RNA (RNA integrity value RIN > 6.0) was used for cDNA synthesis
using SuperScript III kit (Invitrogen). Real-time PCR was performed
with 7500 Fast System and SyberGreen PCR Master Mix  (Applied
Biosystems, Foster City, CA) to determine transcript expression
of Interleukin-6 (IL6), Interleukin-12b (IL12b) and Interleukin-10
(IL10); the gapdh transcript levels were used as the internal control
of 2−��CT method. The primers used in real-time PCR were pur-
chased from Qiagen (il6: PPM03015A, il10: PPM03017B and gapdh:
PPM02946E) and from Integrated DNA Technologies (Coralville,
Iowa). The melting curve analysis of the PCR products was  per-
formed to verify their specificity and identity.

2.5. Pathogenicity, immunization, and challenge studies

Thirty-two mice were used to study pathogenicity of the MAP
mutant strains; the mice were divided into 4 groups: group K-10
was inoculated with 5 × 108 CFU of MAP  K-10 strain intraperi-
toneally while the other three groups (leuD, mpt64,  and secA2)
were inoculated with the same number of mutant bacteria in the
same way. Four mice from each group were sacrificed at 8 and
12 weeks after inoculation. The liver and spleen were collected
aseptically for determination of the bacterial load and histopatho-
logical changes. A total of 128 mice (16 mice/group) were used
to determine the protective efficacy of MAP  mutant strains in
two independent experiments; mock vaccinated mice were given
PBS buffer intraperitoneally while group leuD, mpt64,  and secA2
were vaccinated with 1 × 107 CFU of the respective mutant strain
intraperitoneally. Three weeks after vaccination, all groups were
given a booster dose as described above. Six weeks later, all the
groups were challenged with 5 × 108 CFU of MAP  strain clinical
isolate 66115-98 intraperitoneally. Eight mice from each group
were sacrificed at 8 and 12 weeks after challenge, the liver and
spleen were collected aseptically to determine bacterial load,
histopathological changes, and the immune responses. The col-
lected tissues were fixed by immersion in 10% neutral buffered
formalin, embedded in paraffin wax, sectioned at 4 �m and stained
with hematoxylin and eosin and Ziehl–Neelson by conventional
histological methods as previously described [26]. Tissue sections
were examined by a board certified veterinary pathologist (SPM),
who was blinded to the treatment groups.

2.6. Preparation of spleen cells

The mouse spleens were collected aseptically into a sterile
70 �m cell strainer over a 6-well cell culture plate half filled
with RPMI 1640 media as previously described [7,10].  The spleens
were subjected to mechanical disruption by gently pressing them
through the cell strainer using a 5 ml  syringe plunger and flushing
with sterile RPMI 1640. The disaggregated cells were transferred to
a fresh 50 ml  tube and centrifuged at 500 × g for 10 min. The cell pel-
let was resuspended in ACK lysis solution (3 ml  ACK lysis solution
per spleen) at room temperature for 2 min  to lyse red blood cells.
Next, two volumes of RPMI 1640 medium was added to dilute the
ACK lysis solution and the splencytes were pelleted by centrifuga-
tion at 500 × g for 10 min  at RT. After being washed two times in
an equal volume of RPMI 1640 medium, the cell pellet was resus-
pended with RPMI 1640 medium and the cell number was adjusted

to 1 × 107 cells/ml. The average cell viability was greater than 95%
as determined by trypan blue dye exclusion.

2.7. Cytokine ELISA

Spleen cells were cultured in duplicate in round bottom 96-well
tissue culture plates with 1 × 106 cells/well for 24 h. After stimulat-
ing with 10 �g/ml of MAP  purified protein derivative (PPD) (NVSL,
Ames, Iowa) for an additional 48 h, IFN-� ELISA was  performed
using an ELISA kit according to the manufacture’s instructions
(eBioscience, CA). PPD had been checked for non-specific stimu-
lation by using spleen cells from a mouse without any treatment.

2.8. Flow cytometric analysis

Spleen cells were cultured in duplicate in round bottom 96-well
tissue culture plates with 1 × 106 cells/well for 24 h. After stimulat-
ing with PPD from MAP  for an additional 48 h, FACS analysis was
performed with standard procedures. Briefly, cells were washed
three times with FACS buffer (1% BSA and 0.05% sodium azide in
PBS) and resuspended in 50 �l of FACS buffer with the same volume
of PE conjugated antibodies (anti-CD4 or anti-CD8) diluted for opti-
mum  performance as determined by prior titration (eBioscience,
San Diego, CA), and incubated on ice for 30 min. Cells were washed
twice with FACS buffer and suspended in 100 �l of 3% formaldehyde
in PBS and transferred to FACS tubes containing 300 �l of PBS. Data
were collected on 10,000 events using a FACS caliber flowcytome-
ter (Becton-Dickinson, San Jose, CA) and analyzed using Cellquest
software.

2.9. Statistical analysis

Microsoft Office Excel software was used to perform Student’s
t-test statistical analysis. Differences between groups were consid-
ered significant when a probability value of <0.05 was  obtained.

3. Results

3.1. Construction of deletion mutations in M.  avium subsp.
paratuberculosis

To examine the degree of pathogenicity and protective efficacy
of mutant genotypes of MAP  (leuD, mpt64,  and secA2), the targeted
genes were disrupted by phage-mediated allelic exchange, which
replaced the targeted genes with the hygromycin resistance gene
cassette. As shown in Fig. 1A and B, PCR reaction of leuD, mpt64,
and secA2 genes in the mutants yielded different PCR product sizes
compared to those of wild type K-10, confirming gene replace-
ment. The region of the gene replacement in each mutant was also
examined by DNA sequencing of the PCR product (data not shown).
In addition, the growth curve of mutants in 7H9 broth was  com-
pared to that of wild type K-10 (Fig. 1C). The growth curve of leuD
mutant was  low while that of other two mutants was  only slightly
decreased compared to the growth curve of the K-10 strain.

3.2. Pathogenicity of MAP  mutants in C57BL/6 mice

To determine if the constructed MAP  mutants were attenuated,
C57BL/6 mice were injected intraperitoneally with the mutant and
wild type K-10 strains and mice were sacrificed at 8 and 12 weeks.
As shown in Fig. 2A and B, most mice showed different levels of
inflammation in the liver and spleen at both time points. In the
liver, the majority of the mice (3/4) infected with mpt64 had mild
inflammation (level 1) at week 8, and all mpt64-inoculated mice
had inflammation under level 4 (severe level) at week 12. At both
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Fig. 1. Confirmation of the M.  paratuberculosis deletion mutants. (A) Diagram showing relative positions of primers used in PCR and the size of PCR products from wild type
and  mutants. The sequence of primer pairs used in the PCR is shown in Table 1: leuD 5′ checking and leuD 3′ checking primers were used to check leuD gene replacement; mpt64
5′ checking and mpt64 3′ flanking reverse or secA2 5′ checking and secA2 3′ flanking reverse primers were used to examine mpt64 or secA2 replacements. (B) Identification of
mutant  strains by PCR. Lane 1, 3, and 5: PCR was performed with parental wild-type genomic DNA; Lane 2, 4, and 6: PCR was performed with leuD, mpt64,  and secA2 genomic
DNA.  (C) The growth curve of mutant strains in 7H9 broth was determined and each strain was examined in triplicate.
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Fig. 2. The pathogenicity of M.  paratuberculosis deletion mutants. The mice were inoculated with K-10, leuD, mpt64,  and secA2. Inflammation in liver (A) and spleen (B) 8 and
12  weeks after inoculation. The inflammatory response was ranked as: 0: normal, 1: mild inflammation (less than 1 small granuloma per 40× field), 2: moderate inflammation
(1–3  granulomas per 40× field with a mixture of small and large granulomas), and 3: severe inflammation (>3 large granulomas per 40× field) [37,38]. The acid-fast bacilli
burden  in liver (C) and spleen (D). The number of acid fast organisms was  counted in 10 granulomas (or 10 40× fields if no granulomas present) selected at random and
ranked as: 0: no visible acid fast organisms, 1: <1/granuloma, 2: 1–10/granuloma, 3: 11–25/granuloma, and 4: >25/granuloma.

time points, the leuD-inoculated mice (7/8) had no inflammation
in the spleen, which was significantly different compared to the K-
10-inoculated mice. In addition, Ziehl–Neelsen staining was used
to determinate the number of acid-fast bacilli in tissues (Fig. 2C and
D). Compared with the wild type K-10-inoculated group, the leuD-
inoculated group showed significant differences at both time points
in liver; and no acid-fast bacilli could be detected in the spleen at
either time point. The mpt64-  and secA2-inoculated groups had sig-
nificantly fewer numbers of acid-fast bacilli than the K-10 group in
the spleen at week 8; although both groups had a lower bacterial
burden in liver than wild type group, this difference was  not sta-
tistically significant. Based on the results (Fig. 2), the leuD mutant
strain was the most attenuated.

3.3. Cytokine IL6, IL10 and IL12b expression in MAP-infected
J774A.1 cell

In order to determine if significant pro- and anti-inflammatory
cytokine gene expression changes are produced in macrophages
infected with the MAP  mutant strains, we quantified IL6, IL12b and
IL10 expression levels in J774A.1 cells infected with the various
MAP  strains using the qRT-PCR method. The relative expression
of the pro-inflammatory cytokines IL6 and IL12b was significantly
decreased in J774A.1 cells infected with the mutant strains as com-
pared to K-10 infection (Fig. 3A); among the three mutants, secA2

infection induced lower IL6 and IL12b level than other two mutants
and K-10. Expression of the anti-inflammatory cytokine IL10 also
changed in response to infection with the mutant strains (Fig. 3B);
the IL10 level increased more than 4-fold and 10-fold in leuD-
and secA2-infected J774A.1 cells, respectively (compared to the K-
10-induced IL10 expression level). Conversely, unlike other two
mutants, mpt64 infection induced J774A.1 cell to express lower
IL 10 than wild-type K-10 infection. In addition, leuD, the most
attenuated strain in the pathogenicity studies, induced lower IL6
expression (0.6 fold) and higher IL10 expression (4 fold) than K-10.

3.4. Protective effects of MAP mutants in C57BL/6 mice

In order to evaluate MAP  mutants’ ability to elicit immunity, we
carried out challenge experiments in a mouse model. At the begin-
ning, the leuD mutant was used to determine the vaccine dosage
that would induce the greatest protective effects. After vaccination
with different bacterial numbers and challenge with virulent MAP
66115-98 clinical isolate strain, four mice were sacrificed from each
group at 8 and 12 weeks after challenge. As shown in Fig. 4, the num-
ber of granulomas in the liver was  lowest in the group vaccinated
with 1 × 107 bacteria as compared to the other vaccinated groups.
The MAP  burden in the liver and spleen were examined in all of
the vaccinated groups at week 12; in the vaccinated group given
1 × 107 CFU and a booster, no MAP  could be detected in splenic
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Fig. 3. The relative quantities of IL6, IL12b and IL10 transcript in J774A.1 cells after MAP  infection. The expression of IL6, IL12b (A) and IL10 (B) were determined at 48 h
post-infection. The cytokine transcript expression in J774A.1 cell was  assayed in triplicate and cytokines in mutant infections compared with the ones in K-10 infected cell.
Height  of the error bars indicates SD of the mean.

Fig. 4. The determination of optimum bacterial loading used in vaccination. The degree of inflammation in the liver was examined at 8 and 12 weeks after challenge.
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Fig. 5. The protective effects of mutant vaccination. The mice were vaccinated with PBS buffer (mock), leuD, mpt64,  and secA2, and then challenged with virulent MAP clinical
isolate  66115-98. The degree of inflammation in the liver (A) and spleen (B) was determined at 8 and 12 weeks after challenge. The burden of acid-fast bacilli in the liver (C)
and  spleen (D) was  examined at the same time. The ranking is as described in Fig. 2.

tissues and approximately 9 colonies grew from 1 mg  of liver tis-
sue; by comparison, the group given 1 × 106 CFU and a booster,
4 CFU/mg and 15 CFU/mg were recovered from the spleen and liver,
respectively. Thus, 1 × 107 CFU of mutants with a single booster was
used to vaccinate mice in the following vaccination trials. After vac-
cination with mutants and challenge with virulent MAP  66115-98
clinical isolate strain, eight mice were sacrificed from each group
at 8 and 12 weeks. As shown in Figs. 5 and 6, the degree of inflam-
mation among the groups was almost same at week 8, but all of the
mice in mock-vaccinated group had severe inflammation (level 3).
leuD-Vaccinated group showed significantly reduced inflammation
(2 mice in moderate degree and 2 mice in mild degree at week 8; 6
mice in moderate degree, 1 mouse in mild degree and 1 mouse in
normal degree at week 12) in the liver as compared to the mock-
vaccinated group. mpt64-  and secA2-vaccinated groups had slightly
fewer granulomas as compared to the control group at week 12 but
the differences were not statistically significant. At the same time,
the number of acid-fast bacilli in tissue samples was also counted
(Fig. 5C and D). The results showed that mutant-vaccinated groups
had significantly lesser numbers of acid-fast bacilli compared to
the control group, except the secA2-vaccinated group at week 8.
From week 8 to week 12, the number of acid-fast bacilli in all of

the mutant-vaccinated groups trended downward, especially in the
spleen.

Our data confirmed that vaccination with mutants resulted in
fewer granulomas and lesser numbers of acid-fast bacilli in the
liver and spleen compared to mock-vaccinated mice (Fig. 6). Among
all mutants, the leuD-vaccinated group elicited greater protective
efficacy than the others.

3.5. Specific immunological responses of vaccination trial

We also analyzed the expression of IFN-� induced by MAP  PPD
stimulation in isolated splenocytes from all vaccinated groups 8
and 12 weeks postchallenge. Although mock-vaccinated mice after
challenge with MAP  still expressed some specific IFN-� secretion
under MAP  PPD or rAgs treatment, all other groups showed higher
expression levels of IFN-� secretion (Fig. 7A). At the same time,
the PPD-specific CD4+ and CD8+ T cell proliferation of splenocytes
from all vaccinated groups stimulated with PPD were determined
through flow cytometric analysis (Fig. 7B and C). Compared to
controls, all of the mutant-vaccinated groups had a higher PPD-
specific CD4+ T cell percentage at week 8 and week 12. At
week 8, all of the mutant-vaccinated groups had a greater
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Fig. 6. Photomicrographs of liver (A) and spleen (B) from mock vaccinated control mice and mice vaccinated with mutant MAP  strains leuD, mpt64 and SecA2 12 weeks
after  intraperitoneal challenge with virulent MAP  clinical isolate 66115-98. Mock vaccinated mice had numerous large and small granulomas that contained greater than 25
acid-fast organisms (inset). Compare the number and size of granulomas in the liver and spleen of mice vaccinated with MAP  strain leuD. Note the markedly reduced number
of  acid-fast bacteria in the granulomas of leuD vaccinated mice (inset) compared to the control mice. The number and size of granulomas found in MAP  strain mpt 64 and
secA2 vaccinated mice are intermediate between the control mice and the leu D vaccinated mice.

percentage of CD8+ T cells than the control group; surpris-
ingly, the leuD-vaccinated group splenocyte cultures had a lower
proportion of CD8+ T cells than the control group at week
12.

Immunization with mutants induced protective immunity
against MAP  challenge, as evidenced by more IFN-� secretion and a
higher percentage of CD4+ T cells compared to the mock vaccinated
controls. The proportion of CD8+ T cells in the leuD-vaccinated
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Fig. 7. IFN-� expression levels by splenocytes was determined after 48 h of MAP  PPD treatment (A). The proliferation of PPD-specific CD4+ T cell (B) and CD8+ T cell (C) in
splenocytes was  examined by staining with PE-antiCD4 and PE-antiCD8 antibodies.

group may  be linked to the lower number of acid-fast bacilli. Nearly
no acid-fast bacilli could be detected in the leuD-vaccinated group
at week 12 (Fig. 5D), suggesting that fewer CD8+ T cell numbers
were required compared to the control group that still contained
acid-fast bacilli in splenic tissues.

4. Discussion

The development of an effective vaccine to control of JD remains
one of the most challenging issues in animal health related to this
disease. An improved and cost-effective vaccine against paratu-
berculosis is urgently required for the control of Johne’s disease.

Advances in MAP  genomics and molecular genetics provide an
integrated rational approach to solve this problem. In this con-
text, the search for new vaccine candidates is most effective if
combined with novel approaches to develop a vaccine based on
knowledge of the pathogenesis of mycobacterial infections such as
M. tuberculosis or other intracellular pathogens. Since live attenu-
ated vaccines can induce protective immunity against bovine and
human tuberculosis in animal models, it is anticipated that a live
vaccine against MAP  will control JD more effectively. Targeting spe-
cific genes responsible for MAP  survival or virulence offer attractive
targets for development of live attenuated MAP  vaccine candidates.
As a key step to achieve this goal, we targeted three MAP  genes
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(leuD, mpt64,  and secA2) and successfully generated three differ-
ent MAP  mutants in which three wild-type genes were replaced
respectively with a copy containing a defined deletion created by
allelic exchange. These genes are linked to auxotrophy or virulence
of MtB  [14,16,18–20]. Moreover, the construction of MAP  mutants
could provide more detail about the nature of the pathogenic-
ity and potential protective effect of those strains. Although the
typical features of MAP  infection in cattle (e.g., diarrhea, severe
intestinal lesions) are not observed in mice, the murine model
facilitates JD vaccine trials by allowing measurement of critical
immune response parameters, MAP  burden and inflammation level
in the liver and spleen. We  demonstrated that the leuD mutant
was attenuated in C57BL/6 mice and all three mutants provided
better protection against MAP  challenge in bacterial clearance; the
leuD mutant was the only strain that could simultaneously reduce
inflammation levels and acid-fast bacilli burden. We  also evalu-
ated the nature of the immune response elicited by these mutants.
Data show that the leuD mutant elicited the highest IFN-� level,
indicating the generation of T-cell immunity or cytotoxic CD8+ T
cell responses, which are considered essential against intracellular
pathogens.

Since using macrophages as a screening tool to examine the
virulence of MAP  mutants has been previously reported [12,27],
we employed a similar strategy in this study using J774A.1 cells.
The cells infected with mutants all expressed lower IL6 levels
than the cells infected with K-10; leuD- and secA2-infected cells
expressed greater levels of IL10 than K-10-infected cells. Another
pro-inflammatory cytokine, TNF-�, had a similar expression
pattern to IL6 and IL12b in J774A.1 cells in response to MAP  infec-
tion (data not shown). It was reported some Mtb mutants
down-regulated pro-inflammatory cytokine expression in
macrophages [28,29]; the varied cytokine expression levels
in macrophages infected with mutant MAP  strains may  be a
valuable screening tool.

The leuD mutation causes attenuation of other Mycobacterium
species and can induce protective immunity [16,17]. In our study,
data showed that leuD mutant-vaccinated mice could eliminate
most MAP  from the liver and spleen, consistent with the results of
other studies [16,17]. The linkage of between bacterial metabolism
and virulence has been established and several groups have
reported that auxotrophic mutants of pathogenic bacteria such
as MTB  and Shigella flexneri are attenuated for growth in vitro
within macrophages and in animals in vivo [14,16,30–34]. Although
defective leucine synthesis has a huge impact on the virulence of
MAP, the effects of the leuD gene deletion in the MAP  transcriptome
still needs to be determined. Further, understanding the metabolic
changes in the leuD mutant may  help in the development other
attenuated vaccine candidates.

Reportedly, the secretory protein Mpt64 of MtB inhibits apo-
ptosis of multinucleated giant cells (MGCs) and plays a role in
virulence. In our study, we found that the mpt64 mutant was elimi-
nated more quickly than wild-type K-10, especially from the spleen.
Besides, different to other two mutants, mpt64 induced lower IL10
expression in J774A.1 cells than wild type K-10. The lower IL10
expression in macrophages with mpt64 infection may  contribute
to apoptosis. Therefore, our results also support the conclusion
that Mpt64 has an important role in disease progression of MAP
and additional studies are warranted to understand the mecha-
nism by which Mpt64 inhibits apoptosis of host MGCs. The secA2
mutant strain is also attenuated and is a live vaccine candidate
against MTB  [20,21]. Similarly, the MAP  secA2 mutant was  also
attenuated in a murine model, although it showed higher viru-
lence than the leuD mutant. The MTB  multiple gene deletion mutant
�lysA�panCD�secA2  is currently in clinical vaccine trials [35,36].
Since this mutant currently in trials is a tetra-knockout and ours are
only single knockout mutants, the �lysA�panCD�secA2  mutant

may  be more attenuated than ours. We  have used Ziehl–Neelsen
staining to examine the numbers of acid-fast bacilli in tissue and
found that the mutant-vaccinated groups had obviously fewer acid-
fast bacilli as compared to the mock-vaccinated group.

We determined that 1 × 107 CFU was  the optimum number of
leuD mutant bacteria to induce protective immunity (Fig. 4). Fur-
ther, the leuD mutant was the most obviously attenuated and
induced the best level of protection among the three mutants. Fur-
ther studies of these mutants in goats or calves are necessary to
determine their potential for use as a live vaccine.
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