95 research outputs found

    Link between increased gut hormones signaling satiety and reduced food reward following gastric bypass surgery for obesity

    Get PDF
    CONTEXT: Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. OBJECTIVE: To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. DESIGN: These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. PATIENTS: Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. INTERVENTION: Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. MAIN OUTCOME MEASURES: Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. RESULTS: Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. CONCLUSIONS: Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food

    Studies of Vibrational Properties in Ga Stabilized d-Pu by Extended X-ray Absorption Fine Structure

    Full text link
    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at% Ga stabilized Pu alloy over the range T= 20 - 300 K at both the Ga K-edge and the Pu L_III-edge. The temperature dependence of the pair-distance distribution widths, \sigma(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. We obtain pair- specific correlated-Debye temperatures, \Theta_cD, of 110.7 +/- 1.7 K and 202.6 +/- 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. These results represent the first unambiguous determination of Ga-specific vibrational properties in PuGa alloys, and indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.Comment: 7 pages, 4 figures, Phys. Rev. B in pres

    Probing the charging mechanisms of carbon nanomaterial polyelectrolytes

    No full text
    Chemical charging of single-walled carbon nanotubes (SWCNTs) and graphenes to generate soluble salts shows great promise as a processing route for electronic applications, but raises fundamental questions. The reduction potentials of highly-charged nanocarbon polyelectrolyte ions were investigated by considering their chemical reactivity towards metal salts/complexes in forming metal nanoparticles. The redox activity, degree of functionalisation and charge utilisation were quantified via the relative metal nanoparticle content, established using thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The fundamental relationship between the intrinsic nanocarbon electronic density of states and Coulombic effects during charging is highlighted as an important area for future research
    • …
    corecore