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Relativistic calculations to assess the ability of the generalized gradient approximation
to reproduce trends in cohesive properties of solids

P. H. T. Philipsen and E. J. Baerends
Theoretical Chemistry Department, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
(Received 21 May 1999

We have performed density functional calculations on solids in four columns of the periodic table, contain-
ing the elements Ca, Sr, Ba, As, Sb, Bi, Cu, Ag, Au, Ce, and Th. In order to get a meaningful estimation of the
quality of the generalized gradient approximati@®GA) to predict trends within a column, as few other
approximations were made as possible. Most notably, the spin-orbit effect has not been neglected. In many
cases there appears to be a tendency towards underbinding on going down in a column. This is most pro-
nounced in the noble metal column Cu, Ag, Au. The overall performance of the GGA is still reasonable. The
mean absolute errors of the calculated cohesive energy, lattice parameter, and bulk modulus are 0.35 eV, 0.10
bohr, and 0.15 Mbar, respectively. Nonnegligible contributions of the spin-orbit coupling are found for the
cohesive energy and the lattice parameter of Au and in particular Bi.

[. INTRODUCTION the GGA is not much better than the LDA. Although the
cohesive propertié5'8of the lanthanides are in general im-
The local density approximatiofLDA) in density func- proved by the GGA, it has been claimed that the GGA fails
tional theory (DFT) has been widely adopted by the solid to explain the peculiar transition in Ce from theto the «
state physics communify.” This may be explained on the phase that both have the fcc structure. According to
one hand by its relative simplicity and on the other hand bysomé®?! the transition requires a double minimum in the
the physicist's familiarity with the electron gas model. The binding curve, reproduced by neither LDA nor GGA, and the
nature of chemistry, however, makes chemists much morsecond minimum would be caused by the localization of the
demanding in a quantitative sense, and only after the introf electron that could only be described by self-interaction
duction of the generalized gradient approximati@®GA),  corrected functionals. This supposedly clear-cut evidence of
have they recognized the useful combination of relative simthe failure of the GGA surpasses the fact that only the free
plicity and predictive power of DFT. energy has to exhibit a double minimum and it has been
The effect of gradient corrections in the solid has attracteghointed out? that the entropy term stabilizes the Ce lattice
considerable attention over the last decade. It is now welmost pronounced at larger volumes.
established that, similar to the situation in the molecule, first, It is fair to conclude that although the GGA is certainly
the lattice is softened: the cohesive energy is reduced, theot a uniform improvement over the LDA, it is better on
lattice parameter enlarged and the bulk modulus decreasedyerage. At this point in time there does not appear to be a
and, second, the tendency towards magnétisnncreased. feasible better approximation at our disposal to calculate
The LDA usually overbinding, the softening of the lattice is bulk properties than the GGA. The aforementioned work of
in the right direction, and the success of a gradient correctioikorling and Haylund, however, indicates a systematic ten-
depends on the amount of change induced. One of the pialency of this approximation to increased underbinding going
neering investigations on the effect of gradient corrections irdown in a column of transition metals. They have done cal-
the solid state by Bagnet al? has shown that the straight- culations only at the pseudopotential level, and have there-
forward gradient expansion approximation corrects the LDAfore only indirectly included relativity. Relativity gaining
much too drastically but that the GGA can certainly competdmportance with nuclear charge one might speculate on the
with the LDA. The GGA outperforms the LDA when it impact of this approximation on their results. The question if
comes to the cohesive energies of Al, C, and°ind, unlike  such systematic errors occur in columns of the Periodic
the LDA, predicts correctly the ferromagnetic bcc groundTable makes a proper treatment of relativistic kinematics
state for iror® The work of Kaling and Haylund! on the  mandatory. Semirelativistic and scalar-relativistic calcula-
lattice parameter of transition metals, shows a dramatic imtions on bulk systems are comm&h2®but fully relativistic
provement for the 8 metals, but unfortunately the size of calculations are not, particularly in combination with the
the unit cell is overestimated for thal4nd in particular the  GGA. Fully relativistic LDA calculations on the lattice con-
5d metals. Earlier Barbielliniet al*? arrived at the same stant and bulk modulus have been carried out for Pd, Ir, Pt,
conclusion, based on less systematic work. The improvemerind Au?’ but they were not compared to scalar-relativistic
of the lattice parameter appears to be reflected in the calcwalculations. The spin-orbit effect on the bulk energy has
lated cohesive energies of thel 3netals!® as the average been reported for U and P8, but without the important
error of the LDA of 1.3 eV is reduced to 0.3 eV by the GGA. atomic corrections. Electron localization has been
The structural properties of thep-bonded solids Al, Si, Ge, addressed for the actinides by fully relativistic LDA calcu-
are reasonably described by the GEAbut the quality of  lations but from the properties under consideration only the
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TABLE I. The basis is a mixture of numerical atomic orbitals and Slater type orbitals. The numerical atomic orbitals as well as the frozen
core orbitals depend on the electronic configuration used in the numerical spherical atomic program. The configuration is specified in the
second column. The third column lists the basis functions, a numerical atomic orbital indicated as NAO and a Slater orbital by its exponent.
Orbitals not indicated were kept frozen.

Element Configuration Basis

Ca [Ar]4s? 3s(NAO,2.40, 4s(NAO,0.70,1.65, 3p(NAO,1.85, 4p(1.06), 3d(NAO,1.00, 4f(1.25
Sr [Kr]5s? 4s(NAO,2.75, 55(NAO,0.75,1.85, 4p(NAO,1.75, 5p(1.179), 4d(NAO,1.25, 4f(1.25
Ba [Xe]6s? 5s(NAO,2.70, 6s(NAO,0.65,1.80, 5p(NAO,1.55, 6p(1.22), 5d(NAO,1.25, 4f(1.10
As [Znl4p® 4s(NA0O,1.50.3.30, 4p(NAO,1.00,2.85, 4d(1.60, 4f(1.60

Sh [Cd]5p® 5s(NAO,1.50.3.40, 5p(NAO,1.00,2.65, 5d(1.70), 4f(1.50

Bi [Hglep® 6s(NAO,1.55.3.55, 6p(NAO,1.10,2.95, 6d(1.75), 5f(2.50

Cu [Ar]3di%st 4s(NA0O,0.85,2.45%, 4p(1.00,2.00, 3d(NAO,1.28,6.90, 4f(1.50

Ag [Kr]ad'%s! 5s(NAO,0.90,2.55, 5p(1.00,2.00, 4d(NAO,1.45,4.90, 4f(2.00

Au [Xelafl5d'%s! 6s(NAO,0.95,2.75, 6p(1.25,2.50, 5d(NAO,1.55,5.05, 5f(2.00

Ce [Xel4fl5d6s? 5s(NAO,3.15, 6s(NAO,0.95,1.65, 5p(NAO,2.25, 6p(0.95,1.65, 5d(NAO,0.95,2.90,

4f(NAO,1.99, 5f(1.00
Th [RN]5f%6d%7s? 6s(NAO,3.15, 7s(NAO,1.10,1.90, 6p(NAO,2.45, 7p(1.00,2.00, 6d(NAO,1.05,3.05,

5f(NAO,1.90,5.70, 6f(1.35

bulk modulus was calculated, and was not compared to SRompletely filled levels below the Fermi level, charge is
theory. transferred from the Fermi level to these states, and the cor-
We present fully relativistically calculated cohesive ener-responding configuration is again converged. This cycle is
gies, lattice parameters, and bulk moduli of a variety of sys+epeated until Aufbau is reached with possibly fractional oc-
tems, ranging from the divalent metals Ca, Sr, and Ba via theupations at the Fermi level. We have done this procedure
pentavalent semimetals As, Sh, and Bi, through the noblaithout symmetry constraints on the density. In open shell
metals Cu, Ag, and Au to the rare earth metals Ce and Trsystems both the spin-polarization and the spin-orbit effects
The elements of these four groups lie in thep, d, andf  can be important. The inclusion of spin-polarization in spin-
blocks of the periodic table respectively, and the experimenerbit calculations can be dotteby using the relative size of
tal crystal type is constant within these groups, the only exthe magnetization vector as the spin-polarization
ception being Ba, that has a bcc lattice whereas the other .
members of the group are of the fcc type. Our aim is to {=|m|/p, (D)
assess the quality of the Dirac-Slater approximation, with the . o
. . .. With the magnetization vector
exchange-correlation expression taken from the nonrelativis-
tic GGA. In addition we present the results of scalar-
relativistic and nonrelativistic calculations on the same sys-
tems thus revealing the scalar-relativistic_ and the spin-orbifyhere p is the 2<2 spin density matrix. This model has
effects, and whether or not they could, in retrospect, havgeen ysed in the study of noncollinear magnefi&ff.we
been neglected. have used the component of the magnetization vector only,
leading to

rﬁ=Tr§B, 2

Il. DETAILS

The relativistic calculations were performed in the zeroth {=Paa™Ppp- ®
order regular approximatiofZ ORA).%° Details of the imple-  To obtain the equation of state for the three elements with a
mentation of this method in our bandstructure camn be hexagonal close-packed lattités, Sbh, B) we have kept the
found in an earlier work? In this context it suffices to say So-calledc/a-ratio at the experimental value, rather than op-
that it is an accurate approximation to the Dirac equationtimizing this ratio at each sampled lattice constant.

We have employed the parametrization of Vosko and co- We now discuss more technical details. The integration
workers of the LDA correlation energy. The GGA employs over reciprocal space was done with the analytical quadratic
Becke’s correction for the exchange enéfggnd Perdew’'s method*? The number of symmetry unique points in the
correction for the correlation enerdy.In the bulk calcula- irreducible wedge of the Brillouin zone for the face-centered
tions the GGA energy was evaluated at the LDA densitycubic, body-centered cubic, and rhombohedral crystals were
rather than the GGA density, which has been shown to be ah75, 84, and 316, respectively. A numerical Gaussian inte-
excellent approximatioff We have neglected relativistic gration schent® was employed to evaluate matrix elements
corrections to the XC functional, which is reasonable be-of the Hamiltonian, and the points were chosen such that the
cause it has been shoWrthat this affects bonding energies error of typical integrals was less than 0 The basis sets,

by 0.05 eV and bond lengths by 0.01 bohr. The calculatiorconstructed from linear combination of atomic orbitals, are
of the atomic corrections was done by minimizing the energyshown in Table I. The atomic orbitals can be either numeri-
according to Ref. 38. The procedure is started by convergingal atomic orbitalSNAQ’s) or Slater-type orbital$¢STO’s).

a certain configuration. If the self-consistent solution has inAs can be seen from the table a valence orbital of an atom is
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TABLE II. Maximum absolute error, due to several approxima-  TABLE Ill. Cohesive energies according to the three theoretical
tions, InE (eV), a (bohn, andB (Mbar) for scalar-relativistic cal- models, with the atomic corrections as specified in Table VI. The
culations on the test set Sr, Ba, Sb, Ag, and Ce. Details on the tefdst line contains the mean absolute efdAE).
calculations are given in the text. The last row gives an estimation

of the overall accuracy, assuming independent errors. Element NR SR FR Expt.

Approximation AE Aa AB Ca 1.71 1.67 1.67 1.84

Sr 1.52 1.37 1.37 1.72

k-space sampling 0.02 0.04 0.03 Ba 2.07 1.65 1.66 1.90

Finite basis set 0.02 0.02 0.07 As 2.66 2.65 2.63 2.96

Binding curve description 0.00 0.00 0.01 Sb 252 247 2.42 2.75

Numerical integration 0.00 0.01 0.01 Bi 2.35 2.32 1.81 2.18

Overall accuracy 0.03 0.05 0.08 Cu 3.12 3.30 3.30 3.49

Ag 212 2.36 2.37 2.95

. . . Au 2.11 2.84 2.99 3.81

described by the corresponding NAO, that gives a proper Ce 3.22 4.21 4.16 4.32

descrlp_tlpn of the valence function in the core region, and, Th 5.09 6.05 593 6.20

for additional freedom, two STQO’s with exponents such that

one of them is more contracted than the NAO and the other  MAE 0.57 0.32 0.35

is more diffuse. We have added polarization orbitals with
angular momenta up tb=3. In cases where the numerical
atom had a virtual orbital energetically close to the higheserbitals of this type, one 10% more contracted and the other
occupied orbital we have added this unoccupied NAO to thd0% more diffuse than the original STO. In case of two

basis set, as for instance, thd 8rbital of Ca and the 6of ~ STOs these two orbitals were replaced by one STO that was
Th. In general the frozen core was kept very small to rule ouf.0% more contracted than the most contracted original STO,
any significant effect of this approximation. Only in the se-a second STO 10% more diffuse than the most diffuse origi-
ries As, Sh, Bi the core was chosen slightly larger, but stillnal STO and a third STO with its expectation value of the

reasonably small, because these solids have the rhomboh@dius in between. Counting the NAOs, valence electrons
dral lattice structure that has two atoms per unit cell and argvere thus described at a “quadrupfé-evel. The correct-
more expensive to calculate. The binding curve in the vicinness of our procedure to obtain the binding curve near the
ity of the minimum was obtained as the interpolating pa-minimum as the interpolating parabola in three calculated
rabola in three equidistant points bracketing the minimumpoints spaced 0.2 bohr, was checked with an alternative
with a spacing of 0.2 bohr. For the rhombohedral crystals thénethod to fit the parabola to five equidistant points spaced
angle « was kept fixed at the experimental values as tabu0.1 bohr. Finally the numerical integration mesh was substi-
lated in Ref. 44. The density was expanded in an auxilianjfuted by one with typically 60% more points, integrating
basis set in order to evaluate the Coulomb potential and theharacteristic integrals one order of magnitude better. From
gradient of the density. We have ensured enough flexibilitthe table we see that two largest approximations are the
in both the radial and angular degrees of freedom, such th&space sampling and the basis set. If we assume that the
the least-squares error norm of the fitted density was wel@pproximations are uncorrelated, the energy has an accuracy
below 0.01 electrons. For Ce and Th it was important toof about 0.03 eV, the lattice constant has an uncertainty of
includeh andi functions. ~0.05 bohr and the bulk modulus is reliable up to
Table Il provides information on the accuracy of our cal- ~0.08 Mbar.
culational procedure for which we have performed additional
test calculations at the scalar-relativistic level on a subset of IIl. RESULTS
the systems considered in this article. The test set included

Sr, Sb, Ag, Ce, thus covering the four columns with one The calculated cohesive energies, lattice parameters, and
representative element, and was completed with Ba becaugg ik moduli are shown in Table I1I, Table IV, and Table V,

it is the only studied element with a bcc lattice. For these ﬁverespectively. In these three tables nonrelativistic, scalar-
elements we have examined the influence of the four moskativistic, and fully relativistic numbers are shown. We will
important calculational approximations being tkespace st look at the FR outcomes to judge the quality of the
sampling, the finite basis set, the binding curve descriptiongGa, then discuss the roles played by the scalar-relativistic
and the numerical integration. To check the appropriatenessgng spin-orbit effects, subsequently take a closer look at the

of the employed-space sampling we have repeated the caluytomic corrections, and finally summarize the main conclu-
culations with a better sampling such that for all lattice typessjgns.

— fcc, bee, and hep — the number of sampling points was
more than doubled. The quality of the basis sets was esti-
mated by comparing the results to the outcomes with larger
basis sets. The larger basis sets were constructed from the The fully relativistic cohesive energies from Table |l
original basis sets by adding one STO to the atomic shelinatch in most cases reasonably with experiment. The 0.35
descriptions of the valence and polarization levels, keepingV mean absolute error of the GGA is only slightly worse
the core orbitals and the NAOs fixed. In atomic shell descripthan the 0.3 eV error for thedBtransition metals? In all

tions comprising one STO this orbital was replaced by twocases the cohesive energy is underestimated. The errors in

A. Performance of the GGA
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TABLE IV. The lattice constantbohn as calculated with the ing on going down in a column is visible, albeit much
three theoretical models. The last line contains the mean absolutsmaller. The GGA performs remarkably well for thé ol-

error. umn” Ce and Th, the errors-0.16, and—0.27 being small
compared to the large formation energies of these elements.
Element NR SR FR Expt. In all four columns the underbinding of the heaviest element
Ca 10.39 10.39 10.39 10.54 is larger than the underbinding of the lightest element.
Sr 11.33 11.30 11.30 11.49 The mean absolute error of the GGA fc_Jr the lattice pa-
rameter, see Table IV, is 0.1 bohr. The lattice parameters in
Ba 9.36 9.44 9.44 9.49 . . .
A the series Ca, Sr, Ba are all underestimated, the errors being
S 7.72 7.72 7.72 7.80 . .
—0.15, —0.19, —0.05. In the series As, Sbh, Bi the calcu-
Sb 8.57 8.56 8.56 8.52 .
Bi 9.13 9.02 9.1 8.98 lated lattice parameter changes gradually from too small to
p 6‘ o5 688 688 6‘ 82 too large as can be seen from the errei@.08, 0.04, 0.14.
u : ' : : For the noble metals the lattice constant of Cu is already
Ag 8.07 788 7.88 .73 overestimated by 0.06 bohr and the overestimation increases
Au 8.41 7.91 7.88 771 via 0.15 bohr for Ag to 0.17 bohr for Au. Again the error for
Ce 8.52 9.00 9.02 9.03 Au is the largest in the total set. The LDA underestimates the
Th 8.70 9.58 9.59 9.60 lattice constant of Au by 0.06 boff.In the corresponding
MAE 0.30 0.09 0.10 dimer series as calculated in Ref. 30 the interatomic distance

has the errors-0.02, 0.06, 0.08, exhibiting a similar trend as
in the bulk. The lattice parameters of Ce and Th are predicted
the “s column” Ca, Sr, Ba are—0.17, —0.35, and within the accuracy of the calculations. In two of the four
—0.24, thus not perfectly reproducing the trend in the ex-columns there is a growing tendency to overestimate the lat-
perimental numbers. The LDA error for Ca is 0.4 &, tice constant. In the column with Ca this is true if the first

larger than the GGA error for this element. In the ¢ol- ~ and the last row are compared.
umn” with the elements As, Sb, and Bi the errors are more From Table V we see that the mean absolute error of the

Constant:_o_33, _033, and— 037, and the experimenta| bulk modulus is 0.15 Mbar. In the Ca column the errors are
trend is We” preserved_ The resu'ts are the worst for théN|th|n the aCCUracy of the calculation. The situation is mark-
noble metals. In the d column” Cu, Ag, Au the errors are edly different in the As-headed column, the errors in the bulk
—0.19, —0.58, and—0.82. The 0.8 eV underestimation for modulus being 0.36, 0.11, and 0.06, the elasticity of the sol-
Au leads to the largest error in the total set, and the calculdS changing gradually from much too small to more elastic
lated E, of Au is 0.3 eV smaller than th&, of Cu, at values. In the Cu, Ag, Au series the errors ard.11,
variance with the empirical fact that it should be 0.3 ev —0.21, —0.44: the bulk modulus is already too small for Cu
larger. It is knowR® that the LDA predicts the cohesive en- and the underestimation grows gradually in this column. In
ergy of Au accurately, but the LDA probably spoils the trendthe corresponding dlmer_ series the cglcu!ated.wbratlonal en-
even more because according to the semirelativistic calculrdy also shows a growing underestimation given the errors
tions of Ref. 25 the LDAE, of Au is 0.9 eV less than the 7, —9, =17 C_m_l- The errors of Ce and Th are0.03 and
one for Cu. In the series of the dimers of the three nobld-12 and in this case the trend is reversed.

metals the calculaté§i FR atomization energies are in much
better accord with experiment. Nevertheless in the errors
0.14, 0.05,—0.05, the same propensity towards underbind-

B. Relativistic effects

. Now we proceed with a discussion of the role played by
TABLE V. The bulk modulus(Mbar as calculated with the re|ativity in our calculations. In the-column Ca, Sr, Ba, the
three theoretical models. The last line contains the mean absolutga|ar-relativistic effects on théositive cohesive energy

error. are —0.04, —0.15, and—0.41 eV. The scalar-relativistic
effect reduces the cohesive energy increasingly in this col-
Element NR SR FR Expt. umn. The lattice parameter is unaltered by this effect except
Ca 017 0.17 017 0.15 for the 0.14 bohr expansion of the Ba lattice, and the bulk
Sr 0.12 0.11 011 0.12 Modulus is unaltered for all three elements. No significant

0.10 changes are induced by the spin-orbit coupling in this col-

Ba 0.09 0.08 0.08 . . :
As 0.76 0.76 0.76 039 umn. In thep column As, Sb, Bi, the cohesive energy is
Sbh 050 0.50 055 0.38 remarkably insensitive to the scalar-relativistic effect. The
Bi 0 '38 0 '45 0 '44 0 '32 lattice parameter is reduced 0.16 bohr for Bi. The spin-orbit
' ' ' ' effect reduces the Sb cohesive energy 0.09 eV and has no
Cu 1.37 1.26 1.26 1.37 . . .
A 0.62 0.80 0.80 101 effect on the lattice parameter of this material. The calculated
Ag 0'71 1'32 1'30 1'73 properties of the element Bi exhibit the most spectacular
u ' ' ' '3 contributions of the spin-orbit coupling. The cohesive energy
Ce 0.59 0.33 0.32 055 s reduced 0.56 eV. Note that our conclusion that the trend of
Th 1.07 0.67 0.66 054 the cohesive energy in theecolumn is well predicted by the
MAE 0.25 0.14 0.15 GGA depends critically on this large correction. The lattice

parameter is expanded 0.1 bohr by this effect. The bulk
aReference 47. modulus is not changed significantly in this column by the
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TABLE VI. The nonzero atomic correction®@V) in the three  |ence p electrons. Transforming the basis of spin orbitals
theoretical models. The ground state energy of an atom is the effp, «, p,8, etc) to a basis ofp,;, and ps, spinors, this can
ergy of the spherical spin restricted atom in the configuration age shown to correspond to @, population of 1 andof
specified in Table | minus the atomic correction. course a polarization charge of 3. In the FR As atom the,
occupation is 1.12 and the polarization charge is 2.98. The

Element NR SR FR P, population increases to 1.34 for Sh, whereas the polar-
As 1.66 1.66 1.68 ization charge decreases to 2.90 for this element. In Bi the
sb 1.39 1.40 1.49 numbers deviate further from the nonrelativistic values as the
Bi 1.29 1.32 220 p1> occupation becomes 1.84 and the polarization charge
Cu 0.26 0.26 0.26 reduces to only 1.99.

Ag 0.22 0.22 0.22 The rare earths Ce and Th have complicated ground
AU 0.20 0.20 0.20 states. Due to the near degeneracy of the valendeandf
Ce 3.69 1.40 150 orbitals, a mlDélngoogsth?%e orb|tallsgtak$§ pl%czg as can be seen
™ 243 0.78 1ot from the &%5d%®4f15 and &'9%6d!8%51026 configura-

tions that we have found for Ce and Th.

In the NR and SR models the ground states are simple but
for Ce and Th. The SR configurations for Ce and Th
6s19%5d%514 156 and %19%dY %5104y are similar to the
R case, but nonrelativistically thfeorbital is much more

two relativistic effects. A similar weakening of the bond is
also seen in the Bi dimer because the spin-orbit couplin

decreases the formation energy 0.76 eV and increases t

i ol H 7 0.264 §2
bond length 0.06 bohr in this molecf. The scalar- favored as is visble in the $75d°*4r*  and
relativistic effect cannot be neglected throughout dheol- s” _3§d ) >f* configurations th_at we have f_ound. '_I'he _de-
umn Cu, Ag, Au. The cohesive energy of Cu is already in-stabilization of the contractefdbrbital is the main relativistic

creased by 0.19 eV. For Ag and Au the numbers are 0.23 arfeffect which exp_lains the huge expansion of the lattice that
0.73, respectively. The effects on the lattice parameter in thid'€ SR éffect brings about for these elements.

column are—0.06, —0.18, and—0.52. Also for the bulk

modulus the scalar-relativistic effects0.11, 0.18, and 0.62 D. Conclusions

are non-negligible. The spin-orbit coupling only affects the
properties of Au, reducing the cohesive energy by 0.16 e\{ur

and contracting the lattice by 0.03 bohr. The spin-orbit effectgoing down in a column: cohesive energies are increasingly

in the bulk is different from the effect in the Au dim#, underestimated, lattice parameters overestimated, and bulk

because in the dimer the formation energy is unchanged b : . : :
the spin-orbit coupling. The bond length of the dimer, hOW_Pﬁodull underestimated. This effect is worst for the noble

ever, is contracted similarly 0.01 bohr. The most dramati metals Cu, Ag, Au, and this particular failure of the GGA

scalar-relativistic effects are seen in theolumn. The cohe- %emands the development of an improved functional. As a
: smaller yet qualitatively similar effect is visible in the corre-

sive energy is increased roughly by one eV for both ele- : : : . . .
o ponding dimer series, the testing of an alternative functional
ments. The Ce lattice is expanded by 0.53 bohr and the T ight well be done initially on these, readily calculated

lattice by 0.85 bohr. The excellent performance of the GGAdimers. As opposed to the noble metals, the rare-earths Ce

for these elements would not have been apparent neglectirbq]d Th are remarkably well described by the GGA. Scalar-

the relativistic effect. The spin-orbit coupling reduces th.erelativistic effects are largest in the Ce, Th column, and the

cohesive energy of Ce 0.05 eV, and for Th the reduction i
0.11 eV. The lattice parameter is essentially unaffected.

In conclusion, from all three calculated properties the pic-
e emerges that the GGA tends to underbind the crystal on

Lffect can be understood by the atomic-configuration change
due to the destabilization of the valenterbital. Another

. _ noticeable SR effect is seen for Au. As expected, the spin-
C. Atomic corrections orbit effect is largest for the element at the bottom of phe

The atomic corrections, presented in Table VI, play a sig<olumn, Bi, affecting particularly the cohesive energy by a
nificant role in the determination of the cohesive energy. Adeduction of 0.6 eV, and expanding the lattice by 0.1 bohr.
explained before they result from an optimization of the oc-Also the cohesive properties of Au are somewhat sensitive to
cupation numbers without symmetry constraints on the denthe spin-orbit effect, but the effect can be safely neglected
sity. In the FR case, only for Ce we have found the finalfor the other materials.
solution to have two fractionally occupied orbitgipinorg
at the Fermi level, each_occupied with hglf an electron, all ACKNOWLEDGMENTS
other FR atoms have integral occupation numbers. The
atomic correction for the noble metals is due to the spin- This work was supported by the Netherlands Foundation
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