183 research outputs found

    Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia

    Get PDF
    Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress

    The Effect of Preterm Birth on Thalamic and Cortical Development

    Get PDF
    Preterm birth is a leading cause of cognitive impairment in childhood and is associated with cerebral gray and white matter abnormalities. Using multimodal image analysis, we tested the hypothesis that altered thalamic development is an important component of preterm brain injury and is associated with other macro- and microstructural alterations. T1- and T2-weighted magnetic resonance images and 15-direction diffusion tensor images were acquired from 71 preterm infants at term-equivalent age. Deformation-based morphometry, Tract-Based Spatial Statistics, and tissue segmentation were combined for a nonsubjective whole-brain survey of the effect of prematurity on regional tissue volume and microstructure. Increasing prematurity was related to volume reduction in the thalamus, hippocampus, orbitofrontal lobe, posterior cingulate cortex, and centrum semiovale. After controlling for prematurity, reduced thalamic volume predicted: lower cortical volume; decreased volume in frontal and temporal lobes, including hippocampus, and to a lesser extent, parietal and occipital lobes; and reduced fractional anisotropy in the corticospinal tracts and corpus callosum. In the thalamus, reduced volume was associated with increased diffusivity. This demonstrates a significant effect of prematurity on thalamic development that is related to abnormalities in allied brain structures. This suggests that preterm delivery disrupts specific aspects of cerebral development, such as the thalamocortical system

    Developmental regulation of neural cell adhesion molecule in human prefrontal cortex

    Get PDF
    Neural cell adhesion molecule (NCAM) is a membrane-bound cell recognition molecule that exerts important functions in normal neurodevelopment including cell migration, neurite outgrowth, axon fasciculation, and synaptic plasticity. Alternative splicing of NCAM mRNA generates three main protein isoforms: NCAM-180, -140, and -120. Ectodomain shedding of NCAM isoforms can produce an extracellular 105–115 kDa soluble NCAM fragment (NCAM-EC) and a smaller intracellular cytoplasmic fragment (NCAM-IC). NCAM also undergoes a unique post-translational modification in brain by the addition of polysialic acid (PSA)-NCAM. Interestingly, both PSA-NCAM and NCAM-EC have been implicated in the pathophysiology of schizophrenia. The developmental expression patterns of the main NCAM isoforms and PSA-NCAM have been described in rodent brain, but no studies have examined NCAM expression across human cortical development. Western blotting was used to quantify NCAM in human postmortem prefrontal cortex in 42 individuals ranging in age from mid-gestation to early adulthood. Each NCAM isoform (NCAM-180, -140, and -120), post-translational modification (PSA-NCAM) and cleavage fragment (NCAM-EC and NCAM-IC) demonstrated developmental regulation in frontal cortex. NCAM-180, -140, and -120, as well as PSA-NCAM, and NCAM-IC all showed strong developmental regulation during fetal and early postnatal ages, consistent with their identified roles in axon growth and plasticity. NCAM-EC demonstrated a more gradual increase from the early postnatal period to reach a plateau by early adolescence, potentially implicating involvement in later developmental processes. In summary, this study implicates the major NCAM isoforms, PSA- NCAM and proteolytically cleaved NCAM in pre- and postnatal development of the human prefrontal cortex. These data provide new insights on human cortical development and also provide a basis for how altered NCAM signaling during specific developmental intervals could affect synaptic connectivity and circuit formation, and thereby contribute to neurodevelopmental disorders

    Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose.</p> <p>Methods</p> <p>One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population.</p> <p>Results</p> <p>Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters.</p> <p>Conclusions</p> <p>A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.</p

    Maternal prepregnancy body mass index and offspring white matter microstructure: results from three birth cohorts

    Get PDF
    Prepregnancy maternal obesity is a global health problem and has been associated with offspring metabolic and mental ill-health. However, there is a knowledge gap in understanding potential neurobiological factors related to these associations. This study explored the relation between maternal prepregnancy body mass index (BMI) and offspring brain white matter microstructure at the age of 6, 10, and 26 years in three independent cohorts. Maternal BMI was associated with higher FA and lower MD in multiple brain tracts in offspring aged 10 and 26 years, but not at 6 years of age. Future studies should examine whether our observations can be replicated and explore the potential causal nature of the findings.This work was supported by the European Union’s Horizon 2020 research and innovation program [grant agreement no. 633595 DynaHEALTH] and no. 733206 LifeCycle], the Netherlands Organization for Health Research and Development [ZONMW Vici project 016.VICI.170.200]. The PREOBE cohort was funded by Spanish Ministry of Innovation and Science. Junta de Andalucía: Excellence Projects (P06-CTS-02341) and Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01). The first phase of the Generation R Study is made possible by financial support from the Erasmus Medical Centre, the Erasmus University, and the Netherlands Organization for Health Research and Development (ZonMW, grant ZonMW Geestkracht 10.000.1003). The Northern Finland Birth Cohort 1986 is funded by University of Oulu, University Hospital of Oulu, Academy of Finland (EGEA), Sigrid Juselius Foundation, European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NIH/NIMH (5R01MH63706:02

    Computer-facilitated Review of Electronic Medical Records Reliably Identifies Emergency Department Interventions in Older Adults

    Get PDF
    An estimated 14% to 25% of all scientific studies in peer-reviewed emergency medicine (EM) journals are medical records reviews. The majority of the chart reviews in these studies are performed manually, a process that is both time-consuming and error-prone. Computer-based text search engines have the potential to enhance chart reviews of electronic emergency department (ED) medical records. The authors compared the efficiency and accuracy of a computer-facilitated medical record review of ED clinical records of geriatric patients with a traditional manual review of the same data and describe the process by which this computer-facilitated review was completed. Clinical data from consecutive ED patients age 65 years or older were collected retrospectively by manual and computer-facilitated medical record review. The frequency of three significant ED interventions in older adults was determined using each method. Performance characteristics of each search method, including sensitivity and positive predictive value, were determined, and the overall sensitivities of the two search methods were compared using McNemar's test. For 665 patient visits, there were 49 (7.4%) Foley catheters placed, 36 (5.4%) sedative medications administered, and 15 (2.3%) patients who received positive pressure ventilation. The computer-facilitated review identified more of the targeted procedures (99 of 100, 99%), compared to manual review (74 of 100 procedures, 74%; p < 0.0001). A practical, non-resource-intensive, computer-facilitated free-text medical record review was completed and was more efficient and accurate than manually reviewing ED records

    Differential Development of Human Brain White Matter Tracts

    Get PDF
    Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity. Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives, despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy. Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted ‘U-shape’), with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant diffusion tensor imaging datasets in normative and neuropsychiatric samples

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization
    corecore