908 research outputs found
Probe of Lorentz Invariance Violation effects and determination of the distance of PG 1553+113
The high frequency peaked BL Lac object PG 1553+113 underwent a flaring event
in 2012. The High Energy Stereoscopic System (H.E.S.S.) observed this source
for two consecutive nights at very high energies (VHE, 100~GeV). The data
show an increase of a factor of three of the flux with respect to archival
measurements with the same instrument and hints of intra-night variability. The
data set has been used to put constraints on possible Lorentz invariance
violation (LIV), manifesting itself as an energy dependence of the velocity of
light in vacuum, and to set limits on the energy scale at which Quantum Gravity
effects causing LIV may arise. With a new method to combine H.E.S.S. and Fermi
large area telescope data, the previously poorly known redshift of PG 1555+113
has been determined to be close to the value derived from optical measurements.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
Study of time lags in HETE-2 Gamma-Ray Bursts with redshift: search for astrophysical effects and Quantum Gravity signature
The study of time lags between spikes in Gamma-Ray Bursts light curves in
different energy bands as a function of redshift may lead to the detection of
effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts
with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in
order to measure time lags related to astrophysical effects and search for
Quantum Gravity signature in the framework of an extra-dimension string model.
The use of photon-tagged data allows us to consider various energy ranges.
Systematic effects due to selection and cuts are evaluated. No significant
Quantum Gravity effect is detected from the study of the maxima of the light
curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale
parameter of 3.2x10**15 GeV is set.Comment: 4 pages, 5 figures. v3: Error corrected in Eq. 1. Results updated.
Proceedings of the 30th ICRC, Merida, Mexico (2007
High energy photon flux prediction from neutralino annihilation in the globular cluster Palomar 13
The distant globular cluster Palomar 13 has been found to have a very high
mass-to-light ratio and its profile can be well fitted either by a King model
with a tail, or with a NFW model. This cluster may be the first case of the
many clumps predicted by CDM simulations that would not be disrupted by the
galactic halo potential. We make the hypothesis that Pal 13 is made of
neutralinos and run the DarkSuspect code to estimate the high-energy photon
flux due to the annihilation of neutralinos through various channels in some
benchmark scenarios. These low fluxes may be used as targets to be reached in
proposals for future ground-based high altitude Cerenkov telescopes.Comment: A 2-page poster to be published in ``Astronomy, Cosmology and
Fundamental Physics'', the proceedings of the ESO-CERN-ESA Symposium, eds. P.
A. Shaver, L. Di Lella, and A. Gimene
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
Production of antimatter in the galaxy
The astronomical dark matter could be made of weakly interacting massive
species whose mutual annihilations should produce antimatter particles and
distortions in the corresponding energy spectra. The propagation of cosmic rays
inside the Milky Way plays a crucial role and is briefly presented. The
uncertainties in its description lead to considerable variations in the
predicted primary fluxes. This point is illustrated with antiprotons. Finally,
the various forthcoming projects are rapidly reviewed with their potential
reach.Comment: Invited talk at the TAUP 2005 Conference in Zaragoza (Spain
Supersymmetric dark matter in M31: can one see neutralino annihilation with CELESTE?
It is widely believed that dark matter exists within galaxies and clusters of
galaxies. Under the assumption that this dark matter is composed of the
lightest, stable supersymmetric particle, assumed to be the neutralino, the
feasibility of its indirect detection via observations of a diffuse gamma-ray
signal due to neutralino annihilations within M31 is examined. To this end,
first the dark matter halo of the close spiral galaxy M31 is modeled from
observations, then the resultant gamma-ray flux is estimated within
supersymmetric model configurations. We conclude that under favorable
conditions such as the rapid accretion of neutralinos on the central black hole
in M31 and/or the presence of many clumps inside its halo with inner
profiles, a neutralino annihilation gamma-ray signal is marginally detectable
by the ongoing collaboration CELESTE.Comment: Latex, 32 pages, 12 figures, 5 table
First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula
The Vela supernova remnant (SNR) is a complex region containing a number of
sources of non-thermal radiation. The inner section of this SNR, within 2
degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray
atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from
an extended region to the south of the pulsar, within an integration region of
radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36'
J2000.0). The excess coincides with a region of hard X-ray emission seen by the
ROSAT and ASCA satellites. The observed energy spectrum of the source between
550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45
+/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/-
2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17
(stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear
measurement of a peak in the spectral energy distribution from a VHE gamma-ray
source, likely related to inverse Compton emission. A fit of an Inverse Compton
model to the H.E.S.S. spectral energy distribution gives a total energy in
non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a
distance of 290 parsec to the pulsar. The best fit electron power law index is
2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics letter
Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017
Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very
high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio
fluxes. Our aim is to understand the radiative processes by investigating the
observed emission and its production mechanism using the High Energy
Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent
observations of the BL Lac source RGB J0152+017 made in late October and
November 2007 with the H.E.S.S. array consisting of four imaging atmospheric
Cherenkov telescopes. Contemporaneous observations were made in X-rays by the
Swift and RXTE satellites, in the optical band with the ATOM telescope, and in
the radio band with the Nancay Radio Telescope. Results: A signal of 173
gamma-ray photons corresponding to a statistical significance of 6.6 sigma was
found in the data. The energy spectrum of the source can be described by a
powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux
above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source
spectral energy distribution (SED) can be described using a two-component
non-thermal synchrotron self-Compton (SSC) leptonic model, except in the
optical band, which is dominated by a thermal host galaxy component. The
parameters that are found are very close to those found in similar SSC studies
in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE
gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from
the SED in Swift data, allows clearly classification it as a
high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
- …