14 research outputs found

    Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance

    No full text
    The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming is extensively documented, but comparatively little is known about soluble molecules promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC, described for their respective survival/death functions in normal and oncogenic contexts, as reprogramming modulators. In various somatic cells, we found that reprogramming is accompanied by a transient transcriptional repression of Netrin-1 mediated by an Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our work also sheds light on Netrin-1s function in protecting embryonic stem cells from apoptosis mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1 improves the generation of mouse and human iPS cells

    FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy

    Get PDF
    Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-beta-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and beta-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance

    Fonction de la Nétrine-1 dans la reprogrammation cellulaire et la pluripotence

    No full text
    Pluripotency is the ability of embryonic epiblast cells to self-renew and to give rise to all somatic cells as well as germ cells. Somatic cells can also be reprogrammed toward pluripotency, opening new avenues for stem cell based therapies in the treatment of degenerative diseases. Deciphering the molecular mechanisms, and in particular signaling pathways that control pluripotency is crucial to improve our understanding of early embryogenesis and the use of iPSC (inducible Pluripotent Stem Cell) in regenerative medicine.Herein, I provide the first description of Netrin-1 as a regulator of reprogramming and pluripotency. Netrin-1 and its receptors are present in many cell types and are engaged in a variety of cellular processes beyond its initial characterization in the neuronal system. In the first part, I contributed to explore how Netrin-1 prevents apoptosis mediated by its dependence receptor DCC (Deleted in Colon Carcinoma) during reprogramming. In the second part, I dissected the functions and regulation of this pathway in pluripotency maintenance and in lineage commitmentLa pluripotence est la capacité d'une cellule à s'auto-renouveler et à donner toutes les cellules somatiques ainsi que les cellules germinales. Les cellules pluripotentes peuvent être aussi reprogrammées à partir de cellules somatiques, ouvrant ainsi de nouvelles opportunités pour l'utilisation thérapeutique des cellules souches dans le traitement des maladies dégénératives. La connaissance des mécanismes moléculaires, en particulier des voix de signalisation qui contrôlent la pluripotence, est cruciale pour l'amélioration de notre compréhension de l'embryogenèse précoce et l'utilisation des iPSC (cellules souches pluripotentes induites) dans la médicine régénérative. Ici, je donne la première description de la Nétrine-1 en tant que régulateur de la reprogrammation et de la pluripotence. La Nétrine-1 et ses récepteurs ont été initialement caractérisés dans le système neuronal, mais il a aussi été montré qu'ils étaient exprimés dans différents types cellulaires et impliqués dans divers processus. Dans la première partie, j'ai contribué à explorer comment Nétrine-1 empêche l'apoptose médiée par son récepteur à dépendance DCC (Deleted in Colon Carcinoma) pendant la reprogrammation. Dans la deuxième partie, j'ai disséqué les fonctions et la régulation de cette voie dans le maintien de la pluripotence et dans l'engagement des lignage

    Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling

    No full text
    Netrin-1, via precise Neo1/Unc5B stoichiometry, promotes naive pluripotency, embryonic stem cell self-renewal in combination with leukaemia inhibitory factor, and the formation of the mouse epiblast in vivo. In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3 alpha/beta and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3 alpha/beta and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3 alpha/beta and stabilize beta-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment

    Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis

    No full text
    High-grade serous ovarian cancer (HGSOC) is a lethal malignancy characterized by an immunosuppressive tumor microenvironment containing few tumor infiltrating lymphocytes (TILs) and an insensitivity to checkpoint inhibitor immunotherapies. Gains in the PTK2 gene encoding focal adhesion kinase (FAK) at Chr8 q24.3 occur in ∼70% of HGSOC tumors, and elevated FAK messenger RNA (mRNA) levels are associated with poor patient survival. Herein, we show that active FAK, phosphorylated at tyrosine-576 within catalytic domain, is significantly increased in late-stage HGSOC tumors. Active FAK costained with CD155, a checkpoint receptor ligand for TIGIT (T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains), in HGSOC tumors and a selective association between FAK and TIGIT checkpoint ligands were supported by patient transcriptomic database analysis. HGSOC tumors with high FAK expression were associated with low CD3 mRNA levels. Accordingly, late-stage tumors showed elevated active FAK staining and significantly lower levels of CD3+ TILs. Using the KMF (Kras, Myc, FAK) syngeneic ovarian tumor model containing spontaneous PTK2 (FAK) gene gains, the effects of tumor intrinsic genetic or oral small molecule FAK inhibitior (FAKi; VS-4718) were evaluated in vivo. Blocking FAK activity decreased tumor burden, suppressed ascites KMF-associated CD155 levels, and increased peritoneal TILs. The combination of FAKi with blocking TIGIT antibody (1B4) maintained elevated TIL levels and reduced TIGIT+ T regulatory cell levels, prolonged host survival, increased CXCL13 levels, and led to the formation of omental tertiary lymphoid structures. Collectively, our studies support FAK and TIGIT targeting as a rationale immunotherapy combination for HGSOC

    Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3

    No full text
    Emerging evidence from the current outbreak of Zika virus (ZIKV) indicates a strong causal link between Zika and microcephaly. To investigate how ZIKV infection leads to microcephaly, we used human embryonic stem cell-derived cerebral organoids to recapitulate early stage, first trimester fetal brain development. Here we show that a prototype strain of ZIKV MR766 efficiently infects organoids and causes a decrease in overall organoid size that correlates with the kinetics of viral copy number. The innate immune receptor Toll-Like-Receptor 3 (TLR3) was upregulated after ZIKV infection of human organoids and mouse neurospheres and TLR3 inhibition reduced the phenotypic effects of ZIKV infection. Pathway analysis of gene expression changes during TLR3 activation highlighted 41 genes also related to neuronal development, suggesting a mechanistic connection to disrupted neurogenesis. Together, therefore, our findings identify a link between ZIKV-mediated TLR3 activation, perturbed cell fate and a reduction in organoid volume reminiscent of microcephaly
    corecore