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Abstract Gene copy number alterations, tumor cell stemness, and the development of platinum

chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence.

Stem phenotypes involving Wnt-b-catenin, aldehyde dehydrogenase activities, intrinsic platinum

resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc

and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent

FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin

cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth.

Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors

surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame

chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and

reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity

and b-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an

oncogenic FAK signaling role supporting chemoresistance.

DOI: https://doi.org/10.7554/eLife.47327.001

Introduction
Ovarian carcinoma is the most lethal gynecologic malignancy in the United States (Siegel et al.,

2018). High-grade serous ovarian carcinoma (HGSOC), the most prevalent histologic tumor subtype

(Matulonis et al., 2016), is treated with a combination of cytoreductive surgery and carboplatin

(DNA damage generation) and paclitaxel (microtubule-stabilizing drug) chemotherapy. Cure is highly
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dependent on elimination of microscopic disease (Narod, 2016). Approximately 80% of patients

with HGSOC exhibit serial disease recurrence, develop resistance to platinum chemotherapy, and

die (Bowtell et al., 2015). Although platinum chemotherapy is effective at creating DNA damage

and triggering cell apoptosis, subpopulations of tumor cells can survive this stress (Pogge von

Strandmann et al., 2017).

Tumor sequencing has revealed complexity and heterogeneity among HGSOC (Cancer Genome

Atlas Research Network, 2011). DNA breakage and regions of chromosomal gain or loss are com-

mon (Patch et al., 2015). Gains at 8q24 occur in most HGSOC tumors and encompass the MYC

oncogene at 8q24.21 (Gorringe et al., 2010). Although MYC expression is frequently high in

HGSOC, the clinical significance remains unclear. MYC supports pluripotent stem cell generation

and contributes to chemoresistance (Fagnocchi and Zippo, 2017; Kumari et al., 2017; Li et al.,

2019).

Myc protein expression is regulated by Wnt/b-catenin signaling, which is both essential for embry-

onic development and activated in many tumors (Shang et al., 2017). Wnt and Myc fall within the

10 most prevalent signaling pathways in cancer (Sanchez-Vega et al., 2018). Wnt signaling is tightly

regulated by the stability, subcellular localization, and transcriptional activity of b-catenin, which sup-

ports cancer stem cell (CSC) survival and chemoresistance (Condello et al., 2015; Nagaraj et al.,

2015). Platinum can, paradoxically, also select for ovarian cancer ‘stemness’ through undefined

mechanisms (Wiechert et al., 2016). Increased aldehyde dehydrogenase (ALDH) activity, arising

from elevated expression of a family of cellular detoxifying enzymes, is one hallmark of ovarian CSCs

(Raha et al., 2014; Silva et al., 2011). Culturing cells as tumorspheres in vitro increases chemother-

apy resistance, ALDH expression, cell de-differentiation and stemness (Shah and Landen, 2014;

eLife digest Ovarian cancer is one of the deadliest types of cancer in women. There are two

main reasons for the aggressiveness of this cancer. First, ovarian cancer cells can spread to other

parts of a woman’s body before she has been diagnosed, where the cells grow as tiny clumps or

spheres of tumor cells, also called tumorspheres. Second, in the majority of patients, some ovarian

cancer cells will develop resistance to the chemotherapy used. It is not clear exactly how these

tumor cells become resistant to therapy. One way in which cells could do this is by gaining extra

copies of genes that remove toxic substances or repair DNA, which help them withstand the

therapy.

Here, Osterman, Ozmadenci, Keinschmidt, Taylor, Barrie, Jiang, Bean, Sulzmaier et al. set up a

new experimental method to study how some ovarian cancer cells resist chemotherapy. Comparing

ovarian cancer cells from mice at early and late stages of the disease showed that the later-stage,

more aggressive cells had more genetic changes. One of these changes affected the gene for a

protein called FAK, which was found to have more copies than normal. The FAK protein is an

enzyme that helps cancer cells move around. In cells from mice with late-stage cancer, FAK was

over-active and present at high levels. When these cells grew as tumorspheres, the tumors were

more resistant to chemotherapy than their early-stage counterparts. In patients who have received

chemotherapy, surviving tumor cells also exhibit high levels of FAK activity.

Human ovarian cancer cells that are resistant to chemotherapy can be grown into tumors in mice,

where they retain their resistance to chemotherapy. However, if chemotherapy is combined with a

drug that targets the FAK enzyme, the tumors shrink. This experiment highlights a possible weak

spot of these tumor cells. To understand how FAK makes ovarian cancer cells resistant to

chemotherapy, Osterman et al. deleted the gene for FAK from the cells and then looked at how this

changed the levels of activation of different genes. They found that, in addition to its effects on cell

movement, FAK also activated a group of genes that increase resistance to chemotherapy and

repair damaged DNA.

This better understanding of how ovarian cancer cells resist chemotherapy could lead to new

therapies. In particular, there is now a clinical trial for women with chemo-resistant ovarian cancer in

which standard chemotherapy is combined with an inhibitor of the FAK protein.

DOI: https://doi.org/10.7554/eLife.47327.002
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Malta et al., 2018). Notably, HGSOC dissemination involves tumorsphere growth and survival within

ascites (Pogge von Strandmann et al., 2017).

The PTK2 gene at 8q24.3, encoding focal adhesion kinase (FAK), is frequently amplified in breast,

uterine, cervical, and ovarian tumors (Kaveh et al., 2016). FAK is a cytosolic tyrosine kinase canoni-

cally activated by matrix and integrin receptors controlling cell motility (Mitra et al., 2005). Auto-

phosphorylation at tyrosine 397 (pY397) is a hallmark of FAK activity (Kleinschmidt and Schlaepfer,

2017). HGSOC tumors with PTK2 gains exhibit elevated FAK expression and FAK Y397 phosphoryla-

tion (Cancer Genome Atlas Research Network, 2011; Zhang et al., 2016). Metastatic HGSOC

tumor micro-environments are enriched with matrix proteins that are FAK activators (Pearce et al.,

2018). FAK knockdown and FAK inhibitor studies support an important role for FAK in promoting

invasive tumor growth (Ward et al., 2013; Tancioni et al., 2014), yet the targets downstream of

FAK are varied and may be tumor or stroma context-dependent (Sulzmaier et al., 2014;

Haemmerle et al., 2016). Interestingly, phenotypes associated with FAK knockout can be distinct

from FAK inhibition, since kinase-inactive FAK retains important scaffolding roles (Lim et al., 2008).

Several ATP-competitive FAK inhibitors have been developed. Acceptable Phase I safety profiles

in patients with advanced solid tumors (Jones et al., 2015; Soria et al., 2016; Hirt et al., 2018)

have enabled current Phase II combinatorial clinical trials with FAK inhibitors in pancreatic, mesothe-

lioma, and non-small cell lung carcinoma (NCT02758587 and NCT02546531). In ovarian and prostate

carcinoma preclinical models, FAK inhibition (VS-6063, defactinib) enhanced taxane-mediated tumor

apoptosis (Kang et al., 2013; Lin et al., 2018). While inhibitors of FAK and Myc exhibit combinato-

rial activity in promoting HGSOC cell apoptosis in vitro (Xu et al., 2017), it remains uncertain

whether gains in 8q24 encompassing PTK2 are associated with specific HGSOC cell phenotypes or

responses to therapy, as determinants of FAK pathway dependence in tumors remain unknown.

Herein, we molecularly characterize a new murine model of ovarian cancer that displays spontane-

ous gains in the Kras, Myc, and FAK genes among other striking similarities to HGSOC phenotypes.

By using a combination of genetic FAK knockout and rescue, pharmacological inhibition, sequencing

and bioinformatics, we identify a non-canonical FAK activity-dependent linkage to b-catenin leading

to differential mRNA target expression of Myc and other targets supporting pluripotency and DNA

repair. Our studies linking intrinsic FAK activity to platinum resistance support the combinatorial

testing of FAK inhibitors for recurrent ovarian cancer.

Results

A new in vivo evolved murine epithelial ovarian cancer model
HGSOC is characterized by p53 inactivation and genomic copy number alterations (CNAs), though

no preclinical models exist to study cell phenotypes associated with ovarian tumor CNAs. Murine

ID8 cells, are spontaneously-immortalized clonal ovarian epithelial cells that form slow-growing

tumors in C57Bl/6 mice (Roby et al., 2000). ID8 cells do not contain common oncogenic mutations

and express wild type p53. Targeted p53 inactivation promotes ID8 tumor growth and sensitivity to

platinum chemotherapy (Walton et al., 2016; Walton et al., 2017). Passage of ID8 cells through

C57Bl/6 mice can enhance ID8 tumorigenic potential via undefined mechanisms (Clark et al., 2016;

Mo et al., 2015; Ward et al., 2013).

We previously isolated aggressive ID8-IP cells, lethal in mice within 40 days (Ward et al., 2013),

via early recovery of ascites-associated cells and anchorage-independent expansion ex vivo

(Figure 1A). Total exome sequencing (90% of exons sequenced at 100X) of ID8 and ID8-IP cells

revealed 19619 shared, 29373 ID8 unique, and 11800 ID8-IP unique gene variants. However, less

than 1% of exon variants identified were detected by RNA sequencing (~60 million clean reads/repli-

cate). No equivalent mutations were found in COSMIC, the Catalogue of Somatic Mutations in Can-

cer. In addition to non-synonymous mutations previously identified in ID8 cells (Walton et al., 2016),

we detected two additional changes in Hjurp. In ID8-IP cells, new mutations were identified in Xxylt1

and Atxn10. Overall, the mutational burden within both ID8 and ID8-IP cells is low.

To determine if genetic copy number alterations underlie ID8-IP phenotypes, exome sequencing

read values and bioinformatic analyses were used to map sites of DNA gains or loss across chromo-

somes using ID8 as a reference (Figure 1—source data 1). Gains in murine chromosome cytoband

regions 6qD1-G3, 15qD3-F3, and 15qA1-D3 were present in ID8-IP cells (Figure 1B, green circles).
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These correspond to human cytobands 12p12.1, 8q24.2, and 8q24.3. The latter two represent one

of the most amplified regions in HGSOC (Cancer Genome Atlas Research Network, 2011;

Li et al., 2019). The gain in cytoband 15qA1-D3 is in addition to chromosome 15 polyploidy

detected by ID8 karyotyping (Roby et al., 2000). Notably, common gene gains in ID8-IP and

HGSOC include Kras, Myc, and Ptk2 (encoding FAK) that support proliferation, stem cells, and adhe-

sion signaling, respectively (Table 1). Herein, these ID8-IP cells will be termed KMF to denote gains

in Kras, Myc, and FAK genes. Murine KMF cells contain several gains or losses in genes common to

the top 20 set of genes altered in HGSOC (Table 1).

MYC and PTK2 associations in HGSOC
In HGSOC patients, simultaneous gains in KRAS, MYC, and PTK2 gains co-occur in 42% of tumors;

PTK2 and MYC co-occur in an additional 32% of HGSOC patients (Figure 1C). Thus, more than 70%

of HGSOC tumors contain combined gains at PTK2 and MYC loci. PTK2 copy number gains are line-

arly proportional to PTK2 mRNA (R2 = 0.66) and FAK protein (R2 = 0.61) levels in HGSOC tumors

(Figure 1C—figure supplement 1). Elevated PTK2 mRNA levels in HGSOC are associated with

decreased patient relapse-free survival (n = 1435, p=0.0009, and hazard ratio = 1.25) (Figure 1—fig-

ure supplement 2A). Bioinformatic analyses identified a set of 36 genes on different chromosomes

Figure 1. Spontaneous copy number gains in genes for Kras, Myc, and FAK (Ptk2) in a new murine model (KMF) of ovarian cancer. (A) Schematic

summary of KMF cell isolation by in vivo selection for aggressive ID8 growth in C57Bl/6 mice and expansion of cells as tumorspheres. (B) Whole-

genome copy number ratio (log2) determined from ID8 and KMF exome sequencing. Gains (red) and losses (blue) are denoted across chromosomes.

Circled regions (green) highlight shared genomic copy alterations between KMF and HGSOC (Table 1). (C) Heat map showing genomic copy number

alterations encompassing KRAS, MYC, and PTK2 genes in HGSOC patients (TCGA, 311 tumors). Percentage of tumors with +1 or +2 copy number

gains per group are indicated.

DOI: https://doi.org/10.7554/eLife.47327.003

The following source data and figure supplements are available for figure 1:

Source data 1. ID8 and KMF copy number alterations determined from exome sequencing.

DOI: https://doi.org/10.7554/eLife.47327.006

Figure supplement 1. Analysis of PTK2 mRNA and FAK protein expression as a function of genomic copy number.

DOI: https://doi.org/10.7554/eLife.47327.004

Figure supplement 2. Elevated PTK2 mRNA is associated with a poor prognosis in ovarian cancer.

DOI: https://doi.org/10.7554/eLife.47327.005
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in HGSOC that exhibit a significant and at least a two-fold change in tumors with elevated PTK2.

This 36 gene set was associated with a significant shorter time to relapse (n = 575, p=0.0024, hazard

ratio = 1.37) (Figure 1—figure supplement 2B,C). Together, these results support the importance

of PTK2 gains as a marker for poor prognosis.

KMF cells exhibit enhanced CSC phenotypes and cisplatin resistance
ID8 cells exhibit an epithelial-like morphology and poor growth as colonies in semi-solid methylcellu-

lose media. KMF cells exhibit a mesenchymal morphology, form foci in two-dimensional (2D) cell cul-

ture, and readily form 3D colonies in methylcellulose (Figure 2A,B). When grown in serum-free

supplement-enhanced tumorsphere media (PromoCell) under anchorage-independent conditions for

5 days, ID8 and KMF cells remain ~95% viable and can be analyzed for signaling differences. By

immunoblotting, KMF tumorspheres expressed elevated FAK, increased FAK Y397 phosphorylation,

and decreased E-cadherin and b-catenin protein levels relative to ID8 cells and normalized to actin

(Figure 2C). Treatment of KMF tumorspheres with a glycogen synthase kinase-3 inhibitor (GSK3i)

increased b-catenin protein and nuclear transcriptional activity whereas GSK3i addition had no

effects on b-catenin levels or activity in ID8 cells (Figure 2D). Additionally, greater than 10% of KMF

tumorspheres possessed high ALDH activity with less than 1% of ID8 cells being ALDH-positive

(Figure 2E). These results support the notion that KMF cells have gained enhanced CSC

characteristics.

To determine if ID8 and KMF cells possess distinct transcriptional signatures, RNA sequencing

was performed (Figure 2—source data 1). Using FPKM (Fragments Per Kilobase of transcript per

Million mapped reads) threshold values greater than one, 10800 shared, 744 ID8 enriched, and 402

KMF elevated transcripts were identified (Figure 2F). Top 20 Reactome signaling pathways upregu-

lated in KMF cells include Cell Cycle Control, Mitotic Checkpoint, DNA Repair, and Rho GTPase sig-

naling (Figure 2G). Elevated cell cycle mRNA levels are consistent with enhanced KMF tumorsphere

growth. However, elevated levels of mitotic checkpoint inhibitors such as p21CIP1 were also consti-

tutively and highly expressed in KMF cells (Figure 2H). Deregulated p21CIP1 levels can occur in

p53-deficient cells (Georgakilas et al., 2017), but no mutations in p53 were detected by KMF

exome sequencing and steady-state levels of KMF p53 protein are low. As DNA repair pathway tar-

gets are also increased in KMF cells (Figure 2G), ID8 and KMF tumorsphere viability was measured

after exposure to different concentrations of cisplatin (CP) over 5 days (Figure 2I). KMF cells pos-

sessed increased intrinsic resistance to CP cytotoxicity with greater than a 10-fold difference in EC50

values compared to ID8. Taken together, this new KMF model exhibits noteworthy phenotypic simi-

larities to drug-resistant HGSOC.

Sustained FAK Y397 phosphorylation (pY397) in patient ovarian tumors
surviving neoadjuvant chemotherapy
A small subset of HGSOC patients are treated with neoadjuvant carboplatin and paclitaxel chemo-

therapy to reduce tumor burden prior to undergoing surgery (Matulonis et al., 2016). However,

some tumor cells, such as CSCs, escape CP-mediated apoptosis and survive chemotherapy

Table 1. Shared copy number alterations between KMF and the top 20 most significant gene gains and losses in HGSOC.

Murine
Cytoband

Human
Cytoband

Gain/
Loss Genes in common murine-human loci Pathway/Role

6qD1-G3 12p12.1 Gain KRAS Proliferation

15qA1-D3 8q24.21, 8q24.3 Gain MYC, PTK2 Stem Cell, Adhesion

15qD3-F3 8q24.3 Gain RECQL4 DNA Repair

8qA1.1–1.3 8p23.3 Loss TUSC3 Tumor Suppressor

8qB1.1–1.2 4q34.3 Loss IRF2 Interferon Response

10qA1-D1 19p13.3 Loss TJP3 Tight Junction

13qB3-D2.3 5q11.2, 5q13.1 Loss MAP3K1, FOXD1, PIK3R1 MAPK, Cell Cycle
P85-PI3-kinase

DOI: https://doi.org/10.7554/eLife.47327.007
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Figure 2. Acquired CSC phenotypes and greater intrinsic cisplatin resistance of KMF cells. (A) ID8 or KMF cells at high densities in 2D culture by phase-

contrast imaging. Scale is 25 mm. (B) Quantitation of ID8 and KMF colony formation in methylcellulose (21 days). Values are means (± SEM, ***p<0.001,

unpaired T-test) from three independent experiments. (C) ID8 and KMF 3D protein lysates immunoblotted for pY397 FAK, total FAK, E-cadherin, b-

catenin, and actin. (D) Lentiviral-delivered b-catenin transcriptional reporter activity (7X TCF-eGFP) in ID8 and KMF cells grown as tumorspheres + /-

Figure 2 continued on next page
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(Wiechert et al., 2016). FAK protein and FAK tyrosine phosphorylation (pY397 FAK) levels are ele-

vated in primary HGSOC tumors compared to normal tissue (Zhang et al., 2016), but it is not known

whether chemotherapy alters FAK phosphorylation. To evaluate this, serial sections of paired primary

biopsies and tumors obtained at the time of cytoreductive surgery following neoadjuvant carboplatin

and paclitaxel chemotherapy were analyzed by immunohistochemical staining and quantitative

image analyses (Figure 3—figure supplement 1).

A high degree of Pax8 (tumor marker) and pY397 FAK co-localized staining was detected in pri-

mary biopsy samples with FAK pY397 exhibiting both cytoplasmic and nuclear localization

(Figure 3A,B). Several of these tumor cells stained positive for the Ki-67 proliferation marker. FAK

pY397 staining was higher in ovarian tumor compared to surrounding stromal cells (Figure 3—figure

supplement 1). Surprisingly, pY397 FAK staining remained elevated in non-necrotic tumor samples

obtained after multiple cycles of neoadjuvant chemotherapy (Figure 3—figure supplement 1). By

comparing samples from the same patients pre- and post-chemotherapy, we found pY397 FAK lev-

els trended significantly upward in tumors surviving neoadjuvant chemotherapy (Figure 3D), further

supporting an association between FAK signaling and tumor chemoresistance.

FAK activation upon ovarian tumorsphere formation
FAK pY397 is canonically considered a marker associated with cell adhesion or increased tissue stiff-

ness (Sulzmaier et al., 2014). Unexpectedly, pY397 FAK staining was also observed within Pax-8-

positive ascites tumorspheres that also displayed active b-catenin staining (Figure 4A). This was

unanticipated, since FAK Y397 phosphorylation is rapidly lost when human platinum-resistant

OVCAR3 cells are removed from adherent 2D culture and placed in suspension (Figure 4B). How-

ever, extended time course analyses of OVCAR3 cells cultured in anchorage-independent PromoCell

media revealed that FAK Y397 phosphorylation was restored as OVCAR3 cells clustered to form

tumorspheres within 2–3 days (Figure 4B,C). Surprisingly, CP (1 mM) treatment of OVCAR3 tumor-

spheres (EC50 >10 mM) triggered increased FAK Y397 and b-catenin Y142 phosphorylation

(Figure 4D). As b-catenin Y142 is a direct FAK substrate promoting b-catenin activation in endothe-

lial cells (Chen et al., 2012), our findings support the notion that adhesion-independent non-canoni-

cal FAK activation occurs during tumorsphere formation and in response to CP stimulation.

Combinatorial effects of CP and FAK inhibition
As increased FAK Y397 phosphorylation can occur upon CP treatment, we investigated the effect of

low dose CP treatment (1 mM) in the presence or absence of a FAK inhibitor (VS-4718, 1 mM) over 5

days on tumorsphere formation, ALDH activity, and cell viability (Figure 5). Cisplatin EC50 values for

growth inhibition were 13 mM and 31 mM for OVCAR3 and KMF tumorspheres, respectively. CP

treatment resulted in increased tumorsphere formation and ALDEFLUOR activity in OVCAR3 and

KMF cells, consistent with this low CP dose serving as an activation-type stress (Figure 5A,B). In con-

trast, FAK inhibitor (FAKi) reduced tumorsphere formation and ALDEFLUOR activity compared to

control-treated OVCAR3 and KMF cells (Figure 5A,B).

Figure 2 continued

GSK3b inhibitor. Values are percent GFP+ cells by flow cytometry (NS, not significant, *p<0.05, unpaired T-test, two experiments). Lower, lysates of cells

immunoblotted for b-catenin and actin. (E) Quantitation of ID8 and KMF tumorsphere ALDEFLUOR activity. Values are means expressed as fold-change

to ID8 (± SD, ***p<0.001, unpaired T-test, three independent experiments). (F) RNA sequencing Venn plot: number of shared or different expressed

genes (DEGs) from ID8 and KMF cells in 3D culture. DEGs from FPKM (Fragments Per Kilobase of transcript per Million mapped read) values greater

than 1. (G) Partial list of Reactome (top 20) KMF UP DEGs. N is the number of target genes elevated in KMF versus ID8. X axis are -log10 adjusted pP

values. (H) Immunoblotting for cyclin D1, p21(Cip1), and tubulin in lysates of ID8 or KMF cells grown in 2D [10% serum] or 3D [serum-free PromoCell, 5

days] conditions. (I) Tumorsphere cytotoxicity (Alamar Blue) with increasing CP (5 days) expressed as percent viability to DMSO control. Means (n = 2)

from four independent experiments (± SEM, *p<0.05, **p<0.01 by two-way ANOVA with a Bonferroni’s multiple comparisons test). EC50 values

independently determined.

DOI: https://doi.org/10.7554/eLife.47327.008

The following source data is available for figure 2:

Source data 1. Annotated RNA sequencing results from ID8 and ID8-IP/KMF tumorsphere cell lysates.

DOI: https://doi.org/10.7554/eLife.47327.009
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Figure 3. FAK Y397 phosphorylation (pY397) in HGSOC patient tumors surviving neoadjuvant chemotherapy. (A) IHC staining of paraffin-embedded

serial initial tumor biopsy sections (patient 3000276) with H and E, Pax8, pY397 FAK, and Ki67. Scale is 200 mm. Inset (green box) region is shown at 40X

(below). Scale is 60 mm. (B and C) FAK pY397 staining intensity of paired patient ovarian tumor samples from initial biopsies (panel B) and after surgical

removal following neoadjuvant chemotherapy (panel C) within Pax8-positive (tumor) and Pax8-negative (stroma) regions. Dot plots are quantified

staining from 14 paired patient samples (Aperio software) and bars show mean ± SEM (analyzed 11 regions per sample, ***p<0.001, unpaired T-test).

(D) Increased FAK pY397 staining within Pax8-positive regions post-chemotherapy (*p<0.05, paired T-test). Lines are connecting paired patient tumor

samples collected prior to and after neoadjuvant chemotherapy.

DOI: https://doi.org/10.7554/eLife.47327.010

The following figure supplements are available for figure 3:

Figure supplement 1. Patient tumor samples pre- and post-neoadjuvant chemotherapy, qualitative IHC score, and summary of quantitative image

analyses.

DOI: https://doi.org/10.7554/eLife.47327.011

Figure supplement 2. FAK pY397 phosphorylation is maintained in Pax8-positive HGSOC tumors after neo-adjuvant chemotherapy.

DOI: https://doi.org/10.7554/eLife.47327.012
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FAKi was not directly cytotoxic, since only CP combined with FAKi decreased tumorsphere viabil-

ity (Figure 5C). Single agent CP or FAKi treatment did not alter KMF (Figure 5—figure supplement

1) or OVCAR3 (Figure 5—figure supplement 2) growth or viability in 2D culture. Under 3D condi-

tions, FAKi reduced FAK Y397 phosphorylation and resulted in an elevated percentage of KMF and

OVCAR3 cells in G1 phase of the cell cycle (Figure 5—figure supplements 1 and 2). The finding

that FAKi decreased 3D cell proliferation, and that FAKi exhibits combinatorial activity with low-dose

CP to promote apoptosis, highlights a potential therapeutic combination.

Platinum-resistant tumorspheres can acquire dependence on FAK for
growth
Phosphoinositide 3-kinase (PI3K)-elicited Akt activation is one of several survival signaling pathways

downstream of FAK (Sulzmaier et al., 2014). More than half of HGSOC tumors harbor genetic

lesions that can elevate PI3K activity (Hanrahan et al., 2012). A2780 human ovarian carcinoma tumor

cells contain activating mutations in PI3KCA and inactivation of PTEN - alterations that can promote

Akt activation (Domcke et al., 2013). OVCAR10 cells similarly exhibit elevated Akt phosphorylation

and both A2780 and OVCAR10 cells are resistant to FAKi (1 mM) effects on 3D cell proliferation

(Tancioni et al., 2014). To determine if in vitro acquisition of increased CP resistance alters FAK sig-

naling, intermittent CP exposure (10 mM) and cell recovery was used to generate OVCAR10-CP

(EC50 = 9 mM) and maintain A2780-CP70 cell (EC50 = 60 mM) selection. Immunoblotting revealed

constitutively elevated FAK pY397 within tumorspheres of CP-resistant compared to parental cells

(Figure 6A). In addition, we find that CP-resistant A2780-CP70 and OVCAR10-CP cells exhibited a

Figure 4. Non-canonical FAK Y397 phosphorylation in tumorspheres. (A) Paraffin-embedded IHC serial section staining (H and E, Pax8, pY397 FAK, and

active b-catenin) of peritoneal ascites cells (tumorspheres) from initial (patient 1014086) biopsy. (B) OVCAR3 lysates from 2D adherent, suspended (1 hr),

and cells in anchorage-independent serum-free (PromoCell) conditions facilitating tumorsphere formation were analyzed by total FAK and pY397 FAK

immunoblotting. (C) Representative images of OVCAR3 tumorsphere formation at Day 1, Day 2, and Day 3. Scale is 2 mm. (D) OVCAR3 cells as

tumorspheres (Day 3) treated with DMSO or CP (1 mM) for 1 hr and protein lysates blotted for pY397 FAK, total FAK, pY142 b-catenin, and total b-

catenin.

DOI: https://doi.org/10.7554/eLife.47327.013
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newly acquired dose-dependent sensitivity to FAKi growth inhibition as tumorspheres (Figure 6B),

but not when the same cells were grown in 2D conditions (Figure 6B—figure supplement 1).

FAKi treatment of A2780-CP70 and OVCAR10-CP tumorspheres was accompanied by an

increased percentage of G1 phase cells, decreased cyclin D1 expression, but not increased apopto-

sis (Figure 6—figure supplement 2). Both A2780-CP70 and OVCAR10-CP tumorspheres possessed

increased ALDH activity compared to parental cells (Figure 6—figure supplement 3) and this was

dependent on FAK activity (Figure 6E). FAKi selectively prevented A2780-CP70 and OVCAR10-CP

methylcellulose colony formation (Figure 6F) but did not inhibit parental A2780 or OVCAR10 colony

formation (Figure 6—figure supplement 2).

To determine the effects of combinatorial FAKi and low dose CP treatments, OVCAR10-CP col-

ony formation was evaluated in the presence of DMSO (control), FAKi (1 mM), CP (1 mM), or FAKi

and CP combination (Figure 6G,I). Single agent FAKi reduced colony size (Figure 6G), consistent

with an inhibitory effect on tumorsphere proliferation. FAKi with CP prevented colony formation

(Figure 6H) and this was associated with increased OVCAR10-CP apoptosis (Figure 6I). Only the

combination of FAKi with CP triggered increased A2780-CP70 apoptosis (Figure 6I). These results

support the notion that selection for platinum resistance can result in the acquired dependence on

FAK activity for tumorsphere growth. Moreover, FAK inhibition in combination with CP can trigger

CP-resistant tumorsphere apoptosis.

FAK inhibition sensitizes CP-resistant A2780-CP70 tumors to
chemotherapy
DTomato plus luciferase-labeled A2780 or A2780-CP70 cells were orthotopically injected into mice

to assess the combinatorial potential of FAKi (VS-4718) and cisplatin plus paclitaxel (CPT) chemo-

therapy on paired CP-sensitive and CP-resistant tumors established in immune-deficient mice

Figure 5. Prevention of CSC phenotypes in vitro by pharmacological FAK inhibition. Quantification of OVCAR3 and KMF tumorsphere formation (panel

A), ALDEFLUOR activity (panel B), and tumorsphere viability (panel C) in the presence of DMSO (control), CP (1 mM), FAKi (VS-4718, 1 mM) or CP plus

FAKi for 5 days. Values are means (± SEM, *p<0.05, **p<0.01, ***p<0.001 unpaired T-test) of three independent experiments. Panel C, values are

means (± SEM, ***p<0.001, one-way ANOVA) from three independent experiments.

DOI: https://doi.org/10.7554/eLife.47327.014

The following figure supplements are available for figure 5:

Figure supplement 1. Small molecule FAK inhibition prevents KMF 3D tumorsphere proliferation with effects on cell cycle but not cell apoptosis.

DOI: https://doi.org/10.7554/eLife.47327.015

Figure supplement 2. Small molecule FAK inhibition selectively inhibits OVCAR3 3D tumorsphere proliferation with effects on cell cycle but not cell

apoptosis.

DOI: https://doi.org/10.7554/eLife.47327.016
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Figure 6. Acquired FAK dependence for CP-resistant tumorsphere growth. (A) Human A2780, A2780-CP70, OVCAR10, and OVCAR10-CP tumorsphere

lysates immunoblotted for FAK pY397, total FAK, and actin. (B) Growth of A2780, OVCAR10, A2780-CP70, or OVCAR10-CP cells as tumorspheres in the

presence of FAKi (VS-4718, 0.1 to 1.0 mM) for 4 days. Values are means (± SEM, ***p<0.001, one-way ANOVA) from two independent experiments. (C)

A2780-CP70 or OVCAR10-CP cells grown as tumorspheres (3 days) were treated with DMSO or FAKi (VS-4718, 1 mM) for 24 hr, stained with propidium

iodide, and analyzed by flow cytometry. Shown is percent of cells in G0/G1, S, or G2/M phase of the cell cycle. (D) Quantitation of A2780-CP70 and

Figure 6 continued on next page
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(Figure 7). A2780 tumor growth was insensitive to FAKi (Figure 7—figure supplement 1), consistent

with limited FAKi effects on A2780 growth in vitro. As expected, CPT chemotherapy inhibited

A2780 tumor growth, but did not affect the resistant A2780-CP70 tumors. FAKi with CPT did not

yield additional anti-tumor effects on A2780 tumor growth. In dramatic contrast, in A2780-CP70

tumors, single-agent FAKi treatment reduced tumor mass approximately 40% compared to controls

(Figure 7A,D), and the combination of FAKi with CPT chemotherapy resulted in an even greater

reduction in tumor growth (Figure 7B–D). Interestingly, CPT treatment increased FAK Y397 phos-

phorylation (Figure 7E,F) and ALDH-1A1 staining (Figure 7G) in non-necrotic regions of A2780-

CP70 tumors (Figure 7—figure supplement 2). Adding FAKi to CPT chemotherapy suppressed FAK

Y397 phosphorylation, reduced ALDH-1A1 tumor staining, and increased tumor apoptosis in vivo

(Figure 7E,H). These results show that the combination of a FAK inhibitor with CP exhibits selective

anti-tumor effects on CP-resistant A2780-CP70 tumors in vivo.

KMF FAK inactivation and reconstitution link intrinsic FAK activity to b-
catenin
To provide genetic support for the role of FAK in intrinsic CP resistance, CRISPR/Cas9 targeting was

used to inactivate murine Ptk2 exon four in KMF cells (Figure 8) and human PTK2 exon 3 of OVCAR3

cells (Figure 8—figure supplement 1) to create FAK knockout (KO) cells. No difference in 2D adher-

ent cell growth was detected and FAK KO clones were isolated. Sanger sequencing confirmed

unique deletions/insertions predicted to terminate FAK protein translation in each of four Ptk2

alleles identified in KT3 and KT13 FAK KO clones (Figure 8—figure supplement 2). Exome sequenc-

ing of FAK KO clone KT13 (90% of exons sequenced at 100X) detected only 165 unique variants,

including the four Ptk2 alterations, indicating that CRISPR targeting was specific and that the FAK

KO KT13 genome is similar to parental KMF cells (Figure 8—source data 1).

CRISPR inactivated FAK but not expression of the FAK-related Pyk2 kinase (Figure 8A). In KT3

and KT13 clones, total b-catenin protein levels were constitutively lower than KMF cells (Figure 8A)

and this corresponded to decreased b-catenin transcriptional activity (Figure 8B). When cultured in

PromoCell tumorsphere media under anchorage-independent conditions, FAK KO cell viability

remained high after 5 days (Figure 8C). However, FAK KO cells exhibited sensitivity to CP-mediated

cytotoxicity compared to parental KMF cells. Similar results were obtained comparing parental and

FAK KO OVCAR3 cells (Figure 8—figure supplement 1). Importantly, phenotypes of decreased

tumorsphere formation, ALDEFLUOR activity, and CP resistance in FAK KO OVCAR3 cells were res-

cued by GFP-FAK re-expression (Figure 8—figure supplement 1). These results connect FAK

expression to CP resistance and CSC-associated phenotypes.

To establish a genetic linkage with FAK activity, FAK KO KT13 cells were stably reconstituted

with GFP-FAK wildtype (WT) or a catalytically-inactive (K454R) GFP-FAK point mutation (Figure 8D)

Figure 6 continued

OVCAR10-CP colony formation in methylcellulose (21 days) with DMSO (control) or FAKi (VS-4718, 1 mM). Values are means (± SEM, *p<0.05,

***p<0.001, unpaired T-test) from two independent experiments. (E) A2780-CP70 and OVCAR10-CP tumorsphere ALDEFLUOR activity treated with

DMSO or FAKi (VS-4718, 1 mM) for 24 hr. Values are means (± SEM, **p<0.01, ***p<0.001, one-way ANOVA compared to DMSO) for three independent

experiments. (F) Quantitation of A2780-CP70 and OVCAR10-CP methylcellulose colony formation (21 days). Values are means (± SEM, *p<0.05,

***p<0.001, unpaired T-test) from two independent experiments. (G and H) Representative OVCAR10-CP methylcellulose colony formation (21 days)

(panel G) and colony size (panel H) in the presence of DMSO (control), CP (1 mM), FAKi (1 mM), or CP plus FAKi. Scale is 2.5 mm. Values are means

(± SEM, *p<0.05, ***p<0.001, one-way ANOVA) from two independent experiments. (I) A2780-CP70 and OVCAR10-CP tumorsphere cytotoxicity

(annexin V) in the presence of DMSO (control), CP (1 mM), FAKi (1 mM), or CP plus FAKi. Values are means (± SEM, **p<0.01, one-way ANOVA) from

three independent experiments.

DOI: https://doi.org/10.7554/eLife.47327.017

The following figure supplements are available for figure 6:

Figure supplement 1. Constitutively elevated FAK Y397 phosphorylation in CP-resistant tumorspheres.

DOI: https://doi.org/10.7554/eLife.47327.018

Figure supplement 2. Platinum-resistant A2780-CP70 exhibit FAK-dependent growth.

DOI: https://doi.org/10.7554/eLife.47327.019

Figure supplement 3. ALDEFLUOR assays.

DOI: https://doi.org/10.7554/eLife.47327.020
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(Lim et al., 2010). In 3D anchorage-independent conditions, GFP-FAK-WT and GFP-FAK-R454 were

equally expressed, but only GFP-FAK-WT was phosphorylated at Y397 (Figure 8D). This result con-

firms that intrinsic FAK kinase activity facilitates FAK Y397 phosphorylation. To identify proteomic

differences in an unbiased manner, lysates of KT13 FAK KO, FAK-WT, and FAK-R454 cells were ana-

lyzed by mass spectrometry (Figure 8—source data 2). Elevated levels of extracellular matrix (colla-

gen type six and laminin), surface receptors (N-cadherin and Nectin-2), b-catenin, and Wnt signaling

targets (GPC4) (Sakane et al., 2012) were present in FAK-WT compared to FAK KO cells. These

Figure 7. FAK inhibition sensitizes CP-resistant tumors chemotherapy-induced apoptosis. (A) Experimental schematic and IVIS imaging of labeled

A2780-CP70 cells IP injected into NSG mice (randomized at Day 5). Experimental groups: control saline (black) injection on Days 5, 12, and 19; VS-4718

by oral gavage (green, 100 mg/kg, BID); CPT chemotherapy injection (blue, 3 mg/kg cisplatin and 2 mg/kg paclitaxel) on Days 5, 12, and 19; and VS-

4718 plus CPT combined administration (red). IVIS imaging was performed on Days 4, 11, 18, and 23. Tumor burden is expressed as percent of Day 4.

(B) Representative IVIS images of A2780-CP70 tumor burden on Day 18. (C) Representative images of omentum with A2780-CP70 tumors at Day 24.

Scale is 0.5 cm. (D) Omentum-associated A2780-CP70 tumor mass (n = 6,± SEM *p<0.05, one-way ANOVA) from each treatment group. (E) A2780-CP70

tumor lysates immunoblotted for FAK pY397, FAK, and actin. (F) Ratio of pY397 FAK to total FAK levels in tumor lysates by immunoblotting. Values are

means (± SEM *p<0.05, ***p<0.001, one-way ANOVA) of three tumors per experimental group. Control set to 100. (Gand H) Percent ALDH-1A1-

positive immunofluorescent A2780-CP70 tumor staining or apoptosis (TUNEL and Hoescht 33342 staining) in A2780-CP70 tumors. Values are means

(± SEM, two independent tumors, five random fields per tumor at 20X, *p<0.05, **p<0.01, ***p<0.001 one-way ANOVA).

DOI: https://doi.org/10.7554/eLife.47327.021

The following figure supplements are available for figure 7:

Figure supplement 1. Inhibition of A2780 tumor growth by cisplatin-paclitaxel (CPT) chemotherapy.

DOI: https://doi.org/10.7554/eLife.47327.022

Figure supplement 2. Elevated FAK Y397 phosphorylation and ALDH staining in non-necrotic regions of CPT-treated mice with A2780-CP70 tumors.

DOI: https://doi.org/10.7554/eLife.47327.023
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Figure 8. KMF FAK KO and re-expression link intrinsic FAK activity to b-catenin and tumorsphere formation. (A) Immunoblotting of KMF and CRISPR-

mediated FAK KO clones KT3 and KT13 cell lysates for FAK, Pyk2, b-catenin, and actin. (B) KMF and FAK KO KT13 cell viability treated with DMSO

(control) or CP (1 mM) after 72 hr as measured by Alamar Blue. Values are means (± SEM, *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA with Fisher’s

LSD multiple comparison test) for three independent experiments. (C) b-catenin transcriptional reporter activity (TOPFlash) in transfected KMF and KT13

FAK KO cells + /- GSK3b inhibitor. Values are arbitrary units (***p<0.001, unpaired T-test, two independent experiments). (D) Immunoblotting for pY397

FAK, FAK, and actin in lysates of KMF, FAK KO, GFP-FAK-WT, and GFP-FAK-R454 re-expressing cells. (E) Top 10 proteomic differences (fold-change)

detected by mass spectroscopy of membrane associated proteins in KT13 FAK KO, GFP-FAK-WT, and GFP-FAK R454 re-expressing cells. (F)

Immunoblotting for b-catenin and actin in lysates of KT13 FAK KO cells stably expressing GFP-FAK-WT, GFP-FAK-R454, or b-catenin (DGSK). (Gand H)

XTT metabolic activity (panel G) or tumorsphere formation (panel H) of KMF, KT13 FAK KO, or the indicated reconstituted cells in PromoCell after 5

days. Values are means (± SEM, *p<0.05, ***p<0.001, one-way ANOVA with a Tukey’s multiple comparisons test) from 2 (panel G) or 3 (panel H)

independent experiments.

DOI: https://doi.org/10.7554/eLife.47327.024

The following source data and figure supplements are available for figure 8:

Source data 1. KMF FAK KO clone KT13 exome sequencing variants.

DOI: https://doi.org/10.7554/eLife.47327.027

Source data 2. Summary of mass spectrometry-detected proteomic changes between KMF FAK KO, FAK-WT, and FAK kinase-inactive (K454R) re-

expressing cells grown as tumorspheres.

DOI: https://doi.org/10.7554/eLife.47327.028

Figure supplement 1. OVCAR3 CRISPR-mediated FAK KO and re-expression.

DOI: https://doi.org/10.7554/eLife.47327.025

Figure supplement 2. Sequencing validation of CRISPR/Cas9-mediated FAK KO in KMF cells.

DOI: https://doi.org/10.7554/eLife.47327.026

Diaz Osterman et al. eLife 2019;8:e47327. DOI: https://doi.org/10.7554/eLife.47327 14 of 34

Research article Cancer Biology

https://doi.org/10.7554/eLife.47327.024
https://doi.org/10.7554/eLife.47327.027
https://doi.org/10.7554/eLife.47327.028
https://doi.org/10.7554/eLife.47327.025
https://doi.org/10.7554/eLife.47327.026
https://doi.org/10.7554/eLife.47327


differences were maintained in FAK-WT versus FAK-R454 cells (Figure 8E). As FAK can regulate b-

catenin levels in colon carcinoma cells (Gao et al., 2015), the mass spectrometry results implicate

intrinsic FAK activity in supporting Wnt-b-catenin signaling in KMF cells.

b-catenin promotes FAK KO tumorsphere formation, ALDEFLUOR
activity, and CP resistance
To test whether stabilized b-catenin was sufficient to complement KMF FAK KO cell phenotypes, an

activated b-catenin point-mutant (DGSK) lacking the regulatory GSK3b phosphorylation sites

(Barth et al., 1999) was expressed in KT13 FAK KO cells (Figure 8F). A series of assays were per-

formed comparing KMF, FAK KO, FAK-WT, FAK-R454, and FAK KO b-catenin DGSK expressing cells.

In 3D conditions, FAK KO proliferation was less than KMF cells and this was rescued by FAK-WT,

FAK-R454, and b-catenin DGSK (Figure 8G). Notably, FAK-R454 cells grew in 3D culture, whereas

parental KMF cells treated with FAKi exhibit growth defects (Figure 5). In contrast, FAK activity was

required for clustering of KMF cells into tumorspheres and this phenotype was also supported by b-

catenin DGSK expression (Figure 8H). FAK-WT restored total ALDEFLUOR activity, ALDH-1A2,

ALDH-1B1, and Myc protein levels in FAK KO cells equivalent to parental KMF cells (Figure 9A,C).

Expression of FAK-WT and b-catenin DGSK but not FAK-R454 significantly enhanced FAK KO resis-

tance to CP cytotoxicity in vitro (Figure 9C). Together, these results link intrinsic FAK activity and b-

catenin in supporting KMF CSC and intrinsic CP resistance phenotypes.

FAK activity is essential for KMF tumor growth
Although oral FAKi administration can inhibit tumor growth in mice (Sulzmaier et al., 2014), it

remains unclear whether this is mediated by FAK inhibition within tumor, stroma, or multiple cell

types. Parental KMF, FAK KO, and FAK-WT cells were labeled with a dual reporter (luciferase and

dTomato) and injected within the intraperitoneal cavity of C57Bl/6 mice to test whether FAK is

essential for tumor establishment. At Day 24, luciferase imaging revealed significant KMF tumor bur-

den whereas FAK KO tumor cells were only weakly detected (Figure 9D—figure supplement 1). At

Day 28, flow cytometry enumeration of dTomato-positive peritoneal cells revealed significantly fewer

FAK KO compared KMF and FAK-WT tumor cells (Figure 9E). In an independent experiment over

21 days, FAK KO and FAK-R454 cells did not grow in vivo as did FAK-WT tumors (Figure 9F). Sur-

prisingly, b-catenin DGSK also did not promote FAK KO tumor growth (Figure 9F). This result con-

trasted with the rescue of FAK KO tumorsphere formation, ALDEFLUOR activity, and CP resistance

in vitro by b-catenin DGSK expression (Figure 8). Importantly, these results reveal that intrinsic FAK

activity is essential for KMF tumor establishment in mice. Moreover, b-catenin signaling was not suffi-

cient to support KMF tumor growth in the absence of FAK.

Transcriptomic analyses identify common FAK activity-dependent and
b-catenin supported mRNA targets in KMF and HGSOC
FAK controls various gene transcriptional networks (Sulzmaier et al., 2014; Serrels et al., 2017). As

FAK KO cells are deficient in a number of different phenotypes, we performed RNA sequencing

from KT13 FAK KO, FAK-WT, FAK-R454, and b-catenin DGSK cells grown in PromoCell to determine

FAK activity-dependent, -independent, and b-catenin-specific patterns of differential gene expres-

sion. Using an FPKM cutoff greater than one, 1040 mRNA transcripts were increased two-fold or

more by FAK compared to FAK KO cells and significant after multiple testing correction (Figure 10—

source data 1 ). By filtering out transcripts that were elevated in FAK-R454 versus FAK KO cells

(FAK activity-independent targets), 591 genes were identified as FAK activity-dependent and

showed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment for MAPK Signal-

ing, Cell Cycle, Axon Guidance, and DNA Replication.

After unbiased filtering of the 591 FAK activity-dependent transcripts with those elevated by b-

catenin DGSK, 241 shared transcripts were identified as co-regulated by FAK activity and b-catenin

(Figure 10A). KEGG enrichments were MAPK Signaling, Cell Cycle, Hippo Signaling, and Pluripo-

tency. Last, the 241 shared FAK and b-catenin murine targets were filtered against genes elevated in

HGSOC by querying TCGA. Notably, 135 targets matched, 77 exhibit frequent gains in 20% of

tumors, and 19 genes were elevated in greater than 50% of HGSOC patient tumors (Figure 10A).

Myc was the most common gene target and immunoblotting of KMF, FAK KO, and FAK-WT lysates
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confirmed the regulation of Myc protein expression by FAK (Figure 9B). Although Myc is a common

target of b-catenin (Sanchez-Vega et al., 2018), this result is surprising as both Myc and Ptk2 (FAK)

DNA loci exhibit gains in KMF cells (Table 1). However, FAK knockout and FAK re-expression in

human OVCAR3 cells also showed FAK-mediated regulation of Myc protein levels (Figure 8—figure

Figure 9. Intrinsic FAK activity supports ALDFLUOR activity, CP resistance, and is essential for KMF tumor growth. (A) ALDEFLUOR activity of KMF,

KT13 FAK KO, or the indicated reconstituted cells in PromoCell after 5 days. Values are means (± SEM **p<0.01, ***p<0.001, one-way ANOVA with a

Tukey’s multiple comparisons test) of four independent experiments. (B) Immunoblotting for ALDH-1A2, ALDH-1B1, Myc, and actin in the indicated cell

lysates. (C) Viability (Alamar Blue) of KMF (black circles), KT13 FAK KO (red squares), GFP-FAK WT (green triangle), GFP-FAK R454 (magenta triangle),

and b-catenin DGSK (brown diamond) expressing cells treated with increasing CP concentrations for 5 days. Values are means (± SEM, **, p<0.01,

***p<0.001, two-way ANOVA with a Bonferroni’s multiple comparisons test) from three independent experiments. Lower, EC50 values were determined

independently and using Prism. (D) IVIS imaging of C57Bl/6 mice with dTomato+ and luciferase-expressing KMF or KT13 FAK KO cells at experimental

Day 24. (E) Flow cytometry analyses of peritoneal wash collected dTomato+ cells at Day 28 of mice bearing KMF (black), KT13 FAK KO (red), and FAK

KO re-expressing FAK WT (green) cells. Values are means expressed as percent of total cells in peritoneal wash (± SEM, ***p<0.001, one-way ANOVA).

(F) Intraperitoneal (IP) tumor growth of KT13 FAK KO (red), GFP-FAK-WT (green), GFP-FAK-R454 (magenta), or b-catenin DGSK (brown) expressing cells.

Values are means of CD45-negative tumor cells determined by flow cytometry (± SD, ***p<0.001, one-way ANOVA).

DOI: https://doi.org/10.7554/eLife.47327.029

The following figure supplement is available for figure 9:

Figure supplement 1. Comparison of KMF, KT13 FAK KO, and FAK KO re-expressing GFP-FAK-WT orthotopic growth in C57Bl/6 mice.

DOI: https://doi.org/10.7554/eLife.47327.030
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Figure 10. FAK activity and b-catenin promote a common gene signature elevated in HGSOC. (A) Summary of KMF RNA sequencing and filtering of

differential gene expression. 1040 mRNAs were elevated (greater than log2 and FPKM >1) in FAK-WT versus KT13 FAK KO cells. 449 mRNAs were

elevated in FAK R454 versus KT13 FAK KO cells. This represents FAK scaffold or activity-independent group (blue). By subtraction of FAK-R454 from

FAK-WT targets, 591 FAK activity-dependent targets were identified (green). 1739 mRNAs were elevated in b-catenin DGSK cells, and by filtering

against FAK activity-induced mRNAs, 241 common FAK activity and b-catenin enhanced mRNA targets were identified (red). 135 of 241 murine KMF

targets were matched to genes elevated in HGSOC. 77 targets were elevated in 20% of HGSOC patients and 19 targets were elevated in more than

50% of HGSOC patients. MYC exhibits the highest genetic gain frequency. Top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichments are listed for filtered groups. (B) Real-time PCR quantitation (qRT-PCR) of the indicated DNA repair- or pluripotency-associated mRNAs

from FAK KO and FAK-WT cells grown in PromoCell for 5 days. Values were normalized to ribosomal RPL19 and fold increase are means from two

replicates (± SEM, *p<0.05, T test). (C) Signaling summary of death-inducing and paradoxical survival-sustaining FAK activation by platinum

chemotherapy. FAK signaling to b-catenin support elevated levels of Myc and mRNA target supporting pluripotency and DNA repair genes

hypothesized to support cellular resistance platinum DNA damage. Tumor cell intrinsic FAK kinase activity is essential for KMF tumor growth via

context-dependent signaling as b-catenin activation was not sufficient to promote tumor growth in the absence of FAK.

Figure 10 continued on next page
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supplement 2). Together, these results place FAK, b-catenin, and Myc within a common signaling

pathway activated in ovarian cancer.

KEGG pathway analyses of FAK activity and b-catenin supported targets in HGSOC reveal conser-

vation in Pluripotency, Hippo Signaling, and Cell Cycle (Figure 10A) which include targets support-

ing platinum resistance and stemness phenotypes. Quantitative PCR using independent

experimental samples verified at least twofold changes in genes linked to DNA repair (Recq4l,

Spc24, Pkmyt1, Dscc1, and Rnf144b) or pluripotency (Wnt4, Klf5, Amigo2, Fos, and Ndufa4l2) that

were elevated by FAK-WT re-expression (Figure 10B). Although our studies did not establish causal-

ity of mRNA changes with FAK phenotypes supporting CP resistance and pluripotency of KMF cells,

these targets are part of the FAK activity- and b-catenin-regulated 135 genes elevated in HGSOC.

KMF cells are a unique murine model with profound similarities to HGSOC and will be made avail-

able to the research community.

Discussion
Platinum-resistant ovarian carcinomas have complex tumor genomes, few targetable mutations, and

no effective treatments (Patch et al., 2015). Gene breakage, gains, or losses are common drivers of

tumor cell phenotypes. Using a new in vivo-evolved murine ovarian cancer model termed KMF -

denoting gains in genes for Kras, Myc, and FAK – we demonstrate the functional significance of

PTK2 (FAK) gains observed in HGSOC tumors. KMF cells exhibit more aggressive tumor growth,

greater tumorsphere formation in vitro, elevated FAK Y397 phosphorylation, increased b-catenin

and ALDH activities, and increased resistance to cisplatin-mediated cytotoxicity compared to paren-

tal ID8 cells. In both KMF and human OVCAR3 ovarian carcinoma cells, we identify tumorsphere-

associated non-canonical FAK signaling as supporting CSC phenotypes and intrinsic cisplatin resis-

tance. This context-dependent signaling is consistent with an oncogenic role for FAK activation in

ovarian cancer.

Although MYC amplification at 8q24.21 in HGSOC is associated with a poor prognosis

(Goode et al., 2010), less is known about PTK2 amplification at 8q24.3. We show that over 70% of

HGSOC patient tumors contain gains at both PTK2 and MYC loci, that PTK2 copy number parallels

PTK2 mRNA and FAK protein increases, and that elevated PTK2 mRNA levels are associated with

decreased patient disease-free survival. We identify a set of 36 genes associated with PTK2 gain pre-

dictive of HGSOC relapse. Additionally, we identify Myc as part of a set of 135 genes increased in

murine KMF cells in a FAK kinase-dependent manner that also are highly expressed in HGSOC

tumors. As FAK has also been proposed to function downstream of Wnt-Myc signaling in intestinal

regeneration and tumorigenesis (Ashton et al., 2010), the contribution of FAK in support of Wnt

signaling may be mediated by multiple mechanisms (Chen et al., 2012; Chen et al., 2018;

Gao et al., 2015; Kolev et al., 2017). Moreover, recent studies show that FAK and b-catenin over-

expression cooperate to induce hepatocellular carcinoma (HCC) in mice (Shang et al., 2019) and

that FAK promotes CSC-like phenotypes in HCC cells (Fan et al., 2019).

While platinum and taxane chemotherapy kills most ovarian tumor cells, we unexpectedly find

that FAK activation is elevated in the residual tumor cells of patients undergoing chemotherapy, in

mouse tumors, and in isolated ovarian carcinoma tumorspheres after cisplatin chemotherapy

(Figure 10C). Previous studies showed increased FAK Y397 phosphorylation during the processes of

acquired CP resistance of cultured ovarian carcinoma cells (Villedieu et al., 2006). This is consistent

with studies linking chemotherapy to selective CSC survival (Wiechert et al., 2016) and we show

Figure 10 continued

DOI: https://doi.org/10.7554/eLife.47327.031

The following source data is available for figure 10:

Source data 1. RNA sequencing annotated list of differentially expressed genes in KMF, KT13 FAK KO, FAK-WT, FAK-R454, and b-catenin DGSK cells

grown as tumorspheres.

DOI: https://doi.org/10.7554/eLife.47327.032

Source data 2. List of 135 FAK-activity and b-catenin enhanced mRNAs in KMF matched to genes elevated in HGSOC (TCGA).

DOI: https://doi.org/10.7554/eLife.47327.033
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that FAK inhibition compromises ALDH levels and CSC generation. Notably, platinum-resistant cells

can acquire FAK dependence for growth. This dependence was manifest when culturing ovarian car-

cinoma cells as tumorspheres and this 3D selective phenotype has been observed in breast

(Tanjoni et al., 2010) and squamous cell carcinoma models (Serrels et al., 2012). In the A2780 and

A2780-CP70 models, we found selective FAK dependence for growth in the CP resistant but not

parental CP-sensitive cells.

Via complementary approaches including pharmacological inhibition, FAK knockout, and FAK re-

expression, we show that FAK signaling sustains both intrinsic and acquired resistance to cisplatin

chemotherapy in part via promoting b-catenin activation (Figure 10C). Notably, a FAK to b-catenin

signaling linkage functions as an adaptive chemotherapy resistance pathway in BRAF mutated colon

cancer (Chen et al., 2018). Stabilized b-catenin DGSK expression in KMF FAK KO cells supported

canonical Wnt target genes, yet b-catenin DGSK was unexpectedly insufficient to rescue FAK KO

growth as tumors. This may be due to weak oncogenic activity of the b-catenin DGSK construct

(Barth et al., 1999) or due to a supporting requirement for FAK. Additionally, the FAK-associated

protein Rgnef is also essential for KMF tumorsphere growth and protection from oxidative stress

(Kleinschmidt et al., 2019). We show that FAK expression and intrinsic activity are essential for KMF

tumor growth and that elevated FAK activity and Y397 phosphorylation is an acquired and target-

able cellular adaptation of cisplatin resistance in HGSOC.

In cell culture, cisplatin resistant cells acquired dependence on FAK activity to maintain prolifera-

tion as 3D tumorspheres without alterations in 2D growth. Single agent pharmacological FAK inhibi-

tion did not promote apoptosis of platinum-resistant ovarian cells. Rather, the combination of FAK

inhibition (genomic and pharmacological) with cisplatin-triggered apoptosis of platinum-resistant

cells as tumorspheres in vitro and prevented the growth of platinum-resistant tumors in mice. To this

end, a phase I/II clinical trial for recurrent platinum-resistant ovarian cancer termed ROCKIF (Re-sen-

sitization of platinum-resistant Ovarian Cancer by Kinase Inhibition of FAK, NCT03287271) has been

initiated. ROCKIF will investigate whether the small molecule FAK inhibitor defactinib, in combina-

tion with carboplatin and paclitaxel chemotherapy, can provide benefit for this difficult to treat

patient population.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Antibody anti-FAK
(mouse
monoclonal)

Millipore Sigma clone 4.47;
Cat# 05–537;
RRID:AB_2173817

WB (1:1000)

Antibody anti-FAK (rabbit
polyclonal)

Millipore Sigma Cat# 06–543;
RRID:AB_310162

WB (1:1000)

Antibody anti-phospho-FAK (Tyr397)
(rabbit monoclonal)

Thermo Fischer
Scientific

clone 141–9;
Cat# 44–625G;
RRID:AB_2533702

WB (1:1000)

Antibody anti-phospho-FAK (Tyr397)
(rabbit monoclonal)

Thermo Fischer
Scientific

clone 31H5L17;
Cat# 700255;
RRID:AB_2532307

WB (1:1000)

Antibody anti-phospho-FAK (Tyr397)
(rabbit monoclonal)

Abcam clone EP2160Y;
Cat# ab81298;
RRID:AB_1640500

WB (1:1000)

Antibody anti-E-cadherin
(mouse monoclonal)

Cell Signaling
Technology

clone 4A2;
Cat# 14472;
RRID:AB_2728770

WB (1:1000)

Antibody anti-b-actin
(mouse monoclonal)

Millipore Sigma clone AC-74;
RRID:AB_476697

WB (1:1000)

Antibody anti-b-actin
(mouse monoclonal)

Proteintech Group Cat# 60008–1;
RRID:AB_2289225

WB (1:1000)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Antibody anti-b-cateninXP
(rabbit monoclonal)

Cell Signaling
Technology

clone D10A8;
Cat# 8480;
RRID:AB_11127855

WB (1:1000)

Antibody anti-non-phospho
(Active) b-Catenin
(Ser33/37/Thr41)
(rabbit monoclonal)

Cell Signaling
Technology

clone D13A1;
Cat# 8814;
RRID:AB_11127203

WB (1:1000)

Antibody anti-b-Catenin
(phospho Y142)
(rabbit polyclonal)

Abcam ab27798;
RRID:AB_725969

WB (1:1000)

Antibody anti-c-Myc XP
(rabbit monoclonal)

Cell Signaling
Technology

clone D84C12;
Cat# 5605;
RRID:AB_1903938

WB (1:1000)

Antibody anti-Pyk2
(mouse monoclonal)

Cell Signaling
Technology

clone 5E2;
Cat# 3480;
RRID:AB_2174093

WB (1:1000)

Antibody anti-p21
(mouse monoclonal)

Santa Cruz
Biotechnology

clone F5;
Cat# sc-6246;
RRID:AB_628073

WB (1:250)

Antibody anti-GFP
(mouse monoclonal)

Santa Cruz
Biotechnology

clone B2;
Cat# sc-9996;
RRID:AB_627695

WB (1:1000)

Antibody anti-p53 (Pab 240)
(mouse monoclonal)

Santa Cruz
Biotechnology

Cat# sc-99,
RRID:AB_628086

WB (1:250)

Antibody Anti-a-Tubulin
(mouse monoclonal)

Millipore Sigma Cat# T6199;
RRID:AB_477583

WB (1:1000)

Antibody anti-ALDH1A1
(rabbit polyclonal)

Abcam Cat# ab23375;
RRID:AB_2224009

WB (1:1000)

Antibody anti-ALDH1A2
(rabbit polyclonal)

Proteintech Group Cat# 13951–1-AP,
RRID:AB_2224033

WB (1:1000)

Antibody anti-ALDH1B1
(rabbit polyclonal)

Proteintech Group Cat# 15560–1-AP,
RRID:AB_2224162

WB (1:1000)

Antibody anti-ALDH3B1
(rabbit polyclonal)

Proteintech Group Cat# 19446–1-AP WB (1:1000)

Antibody anti-Ki67
(rabbit polyclonal)

Abcam Cat# ab15580;
RRID:AB_443209

WB (1:1000)

Antibody anti-Pax8
(rabbit polyclonal)

Proteintech Group Cat# 10336–1-AP;
RRID:AB_2236705

WB (1:1000)

Antibody anti-p53
(mouse monoclonal)

Abcam clone PAb 240;
RRID:AB_303198

WB (1:250)

Antibody anti-Cyclin D1
(rabbit polyclonal)

Cell Signaling
Technology

Cat# 2922;
RRID:AB_2228523

WB (1:1000)

Antibody Alexa Fluor 700
Rat Anti-Mouse
CD45

Thermo Fisher
Scientific

clone 30-F11;
Cat# 45-0451-80;
RRID: AB_891454

1 ul per test

Strain, strain
background
(Escherichia coli)

Stellar Competent
Cells,
E. coli HST08 strain

Takara Cat# 636763 Chemically
competent cells

Strain, strain
background
(Escherichia coli)

One Shot Stbl3
Chemically
Competent E. coli

Life Technologies Cat# C737303 Chemically
competent cells

Chemical
compound, drug

Jet PRIME Polyplus-transfection Cat#114–15

Chemical
compound, drug

FuGENE HD
Transfection Reagent

Promega Cat# E2311

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Halt Protease
Inhibitor
Cocktail (100X)

Thermo Fischer
Scientific

Cat# 87786

Chemical
compound, drug

staurosporine Cell Signaling
Technology

Cat# 9953S

Chemical
compound, drug

cisplatin Enzo Life Sciences Cat# 89150–634

Chemical
compound, drug

GSK inhibitor
CHIR99021

Millipore Sigma Cat# SML1046

Chemical
compound, drug

Propidium iodide BioLegend Cat# 421301

Chemical
compound, drug

DTT Bio Basic Cat# DB0058-5

Peptide,
recombinant protein

Mouse FAK
(phospho Y397)
peptide

Abcam Cat# ab40145

Commercial
assay, kit

PureLink RNA
Mini Kit

Thermo Fisher
Scientific

Cat# 12183020

Commercial
assay, kit

Ambion Homogenizer Thermo Fisher
Scientific

Cat# 12183026

Commercial
assay, kit

XTT Cell
Proliferation
Assay Kit

ATCC Cat# 30–1011K

Commercial
assay, kit

Dual-Luciferase
Reporter Assay System

Promega Cat# E1910

Commercial
assay, kit

PE Annexin V Apoptosis
Detection Kit I

BD Biosciences Cat# 559763

Commercial
assay, kit

AlamarBlue Cell
Viability Reagent

Thermo Fischer
Scientific

Cat# DAL1025

Commercial
assay, kit

iTaq Universal
SYBR Green Supermix

Biorad Cat# 1725121

Commercial
assay, kit

High-Capacity cDNA
Reverse Transcription Kit

Thermo Fisher
Scientific

Cat# 4368814

Commercial
assay, kit

AldeRed ALDH
Detection Assay

Millipore Sigma Cat# SCR150

Cell line
(Homo-sapiens)

OVCAR3 NCI Tumor Repository RRID:CVCL_0465

Cell line
(Homo-sapiens)

OVCAR10 Denise Connolly
(Fox Chase Cancer
Center)

RRID:CVCL_4377

Cell line
(Homo-sapiens)

OVCAR10-CP this paper Schlaepfer Lab

Cell line
(Homo-sapiens)

A2780 Denise Connolly
(Fox Chase Cancer
Center)

RRID:CVCL_0134

Cell line
(Homo-sapiens)

A2780-CP70 Denise Connolly
(Fox Chase Cancer
Center)

RRID:CVCL_0135

Cell line
(Mus-musculus)

ID8 Katherine Roby
(University of Kansas
Medical Center)

RRID:CVCL_IU14

Continued on next page

Diaz Osterman et al. eLife 2019;8:e47327. DOI: https://doi.org/10.7554/eLife.47327 21 of 34

Research article Cancer Biology

https://scicrunch.org/resolver/CVCL_0465
https://scicrunch.org/resolver/CVCL_4377
https://scicrunch.org/resolver/CVCL_0134
https://scicrunch.org/resolver/CVCL_0135
https://scicrunch.org/resolver/CVCL_IU14
https://doi.org/10.7554/eLife.47327


Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Mus-musculus)

KMF (ID8-IP) PMID: 23275034 Schlaepfer Lab KMF cells were
isolated from peritoneal
ascites of ID8-injected
C57Bl6 tumor-bearing
mice as described
(PMID: 23275034)

Recombinant
DNA reagent

pUltra-Chili-Luc Addgene Plasmid # 48688

Recombinant
DNA reagent

MSCV-beta-
catenin-IRES-GFP

Addgene Plasmid # 14717

Recombinant
DNA reagent

pSpCas9n(BB)�2A-
Puro (PX462)

Addgene Plasmid # 48141

Recombinant
DNA reagent

M50 Super 8x TOPFlash Addgene Plasmid #12456

Recombinant
DNA reagent

pCDH-CMV-MCS-EF1a-Puro
Cloning and Expression
Lentivector

System
Biosciences

Cat# CD510B-1

Recombinant
DNA reagent

7TGP Addgene Plasmid # 24305

Recombinant
DNA reagent

psPAX2 Addgene Plasmid #12260

Recombinant
DNA reagent

pMD2.G Addgene Plasmid #12259

Plasmids and reagents
The dTomato with luciferase lentiviral vector, pUltra-Chili-Luc, was a gift from Malcolm Moore

(Addgene #48688). The lentiviral vector MSCV-b-catenin (DGSK-KT3)-IRES-GFP was a gift from Tan-

nishtha Reya (Addgene #14717). The CRISPR/Cas9 plasmid pSpCas9n(BB)�2A-Puro was a gift from

Feng Zhang (Addgene #48141). M50 Super 8x TOPFlash was a gift from Randall Moon (Addgene

#12456). Lentiviral vectors for murine GFP-FAK and GFP-FAK R454 in pCDH-CMV-MCS-Puro (Sys-

tem Biosciences) were used as described (Chen et al., 2012). FAKi (VS-4718) was from Verastem Inc

FAKi, cisplatin (Enzo Life Sciences) or staurosporine (Calbiochem) were dissolved in DMSO for in

vitro studies. VS-4718 was suspended in 0.5% carboxymethyl cellulose (Sigma) and 0.1% Tween 80

(Sigma) in sterile water and administered twice daily by oral gavage for tumor experiments. For

mouse experiments, cisplatin and paclitaxel (APP Pharmaceuticals) were obtained from the Moores

Cancer Center Pharmacy.

Cells
Human ovarian carcinoma A2780, A2780-CP70, and OVCAR10 cell lines were from Denise Connolly

(Fox Chase Cancer Center, PA). NIH OVCAR3 cells were from the Division of Cancer Treatment and

Diagnosis Tumor Repository, National Cancer Institute (Frederick, MD), murine ovarian ID8 cells

were from Katherine Roby (University of Kansas Medical Center), and KMF cells were isolated from

peritoneal ascites of ID8-injected C57Bl6 tumor-bearing mice as described (Ward et al., 2013).

Intermittent CP exposure (10 mM for 24 hr), cell recovery (7 days), and repeated exposure-recovery

(five times) was used to generate OVCAR10-CP cells and maintain A2780-CP70 cells. All cells were

from validated sources and were evaluated for mycoplasma contamination.

OVCAR3 FAK knockout cells were created using CRISPR/Cas9 targeting. pSpCas9n(BB)�2A-Puro

was used to deliver guide RNAs (ACTGGTATGGAACGTTCTCC and TGAGTCTTAGTACTCGAATT)

targeting exon 3 of human PTK2. Transfected cells were enriched by puromycin (1 mg/ml, 3 days)

and clones selected by dilution. Loss of FAK expression was verified by immunoblotting. DNA

sequencing was used to verify insertions/deletions introducing stop codons in PTK2 exon 3. FAK re-

expressing cells were generated by lentiviral transduction of OVCAR3 FAK KO clone AB21, puromy-

cin selection, enrichment by flow cytometry, and GFP-FAK protein expression verified by immuno-

blotting. KMF FAK KO cells were generated by CRISPR/Cas9 targeting. pSpCas9n(BB)�2A-Puro was
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used to deliver two independent guide RNAs (ACTTACATGGTAGCTCGCGG and CACTCCCA-

CAGCCATCCTAT) targeting exon 4 of murine Ptk2. Transfected cells were enriched by puromycin

selection (3.5 mg/mL for 24 hr) and clones selected by dilution. Loss of FAK expression was verified

by immunoblotting. DNA sequencing was used to verify insertions/deletions introducing stop

codons in murine Ptk2 exon 4. GFP-FAK-WT, GFP-FAK-R454, and DGSK b-catenin (GFP expressed

independently) were generated by lentiviral (for FAK) or retroviral (for b-catenin DGSK) transduction,

puromycin or hygromycin selection, enrichment by flow cytometry, and protein expression verified

by immunoblotting. For adherent 2D growth, cells were maintained in DMEM (OVCAR10,

OVCAR10-CP, ID8, and KMF) or RPMI 1640 (A2780, A2780-CP70, and OVCAR3) supplemented with

10% fetal bovine serum (FBS, Omega Scientific), 1 mM non-essential amino acids, 100 U/ml penicil-

lin, and 100 mg/ml streptomycin on cell culture-treated plastic plates (Costar). For growth as tumor-

spheres, cells were seeded in poly-hydroxyethyl methacrylic acid (poly-HEMA) coated Costar plates

(non-adherent) in serum-free CSC media (3D Tumorsphere Medium XF, PromoCell GmbH) at cell

dilutions recommended by the manufacturer. Prior to tumor initiation experiments, KMF, A2780,

and A2780-CP70 cells were transduced with a lentiviral vector expressing dTomato and luciferase

(pUltra-Chili-Luc) or mCherry (pCDH-CMV-MSCI) and enriched by fluorescence sorting.

2D and 3D cell growth assays
For 2D growth, cells were seeded (3 � 105 cells per well) in tissue culture-treated 6-well plates

(Costar). At the indicated time, cells were enumerated and stained with Trypan blue (ViCell XR, Beck-

man). Alternatively, cell metabolic activity was measured by a colorimetric XTT assay (Sigma). For 3D

tumorspheres, cells were seeded at 10,000 cells/ml equivalent in poly-HEMA-coated 6-, 24-, or 96-

well plates (Costar) for 5 days. At the indicated times, 3D tumorspheres were phase-contrast imaged

(Olympus CKX41), enumerated (ViCell XR), or collected by centrifugation. Spheroid size was deter-

mined using Image J (NIH). Alternatively, cell metabolic activity was measured by a colorimetric XTT

assay (Sigma). For methylcellulose colony formation, cells were suspended in 1% methylcellulose

diluted in 2D growth media, 104 plated in six-well poly-HEMA-coated plates, and colony formation

analyzed after 21 days. Cells from methylcellulose colonies were collected by dilution-dispersion in

PBS, centrifugation at 400 xg, and washed in PBS prior to enumeration or cell lysis. Cells were used

at passage 10 to 35 and mycoplasma testing was performed every 3 months. For all experiments,

triplicate experimental points were evaluated (technical replicates) and experiments were repeated

at least two times (biological replicates).

Patient tumor samples
De-identified human ovarian cancer tissue specimens from consented patients were obtained from

the Fox Chase Cancer Center (FCCC) Biosample Repository Facility (BRF) under Institutional Review

Board (IRB) approved protocols (IRB 11–866 and IRB 08–851). FCCC staff queried the BRF sample

database to identify participants that received carboplatin and paclitaxel neoadjuvant chemother-

apy. Biopsy specimens were obtained from FCCC Surgical Pathology, sectioned, H and E stained,

and reviewed by a board-certified pathologist. FFPE blocks from the biopsy and the corresponding

surgical resection blocks banked by the BRF were cut to obtain one H and E stained slide and six

additional unstained sections. One section each from pre-treatment biopsy and post-neoadjuvant

treatment surgical resection specimen was stained for Pax8 by the FCCC Histopathology Facility.

The remainder of unstained slides were sent to UCSD for additional staining performed under UCSD

IRB-approved protocol (IRB 110805).

Cell cycle analysis
Cells were collected as a single cell suspension by limited trypsin treatment, fixed in 70% ethanol

and stored at �20˚C overnight. Cells were incubated in 100 ml of PBS containing DNAse-free RNAse

(100 mg/mL, Qiagen). After 45 min, propidium iodide (10 mg/mL) was added prior to flow cytometry

and analyzed using FlowJo (v9.5.1) and ModFit LT (Verity Software House) software.

b-catenin transcriptional activity
Integrated reporter: 293 T cell transfection with a b-catenin DNA binding reporter (7X-TCF repeat

sequence AGATCAAAGGgg) driving eGFP (7TGP, Addgene #24305, gift from Roel Nusse) was
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packaged with psPAX2 (gift from Didier Trono, Addgene #12260) and pMD2.G (gift from Didier

Trono, Addgene #12259) using Fugene HD (Thermo) according to the manufacturer’s instructions.

Media was replaced after 6 hr, conditioned media with virus collected (36 hr), centrifuged (500 g),

and target cells infected for 24 hr with polybrene (8 mg/ml Sigma). Transduced cells were selected

by puromycin (1 mg/ml, 5 days). Proliferating cells were seeded in 3D tumorsphere growth conditions

(PromoCell), DMSO or GSK3b inhibitor (CHIR99021, Sigma, 3 mM) added after 24 hr, and cells evalu-

ated by flow cytometry (BD FACSCelesta) after 5 days. For transient transfection of a b-catenin TOP-

Flash reporter, 3.5e4 cells were seeded in triplicate in 24-well plates and co-transfected with M50

Super 8x TOPFlash with firefly and Renilla luciferase expression vectors using Fugene HD (Promega).

After 5 hr, media was replaced and cells treated with DMSO or 3 mM GSKi (CHIR99021). After 24 hr,

cells were evaluated using the Dual-Luciferase Reporter Assay system (Promega, E1910) and a plate

luminometer (Dynex Tech., VA).

Viability and cytotoxicity studies
For annexin V and 7-AAD staining, cells were cultured in adherent or non-adherent conditions as

described above for 24 hr or 5 days, respectively, with increasing cisplatin treatment (0 to 100 mM).

Cells were dissociated using limited trypsin treatment, washed by centrifugation, suspended in

annexin-V binding buffer (10 mM Hepes, 140 mM NaCl and 2.5 mM CaCl2) and incubated with allo-

phycocyanin-conjugated Annexin V (eBioscience) and 7-aminoactinomycin D (7-AAD) for 10 min at

RT prior to analysis on a FACSCalibur flow cytometer (BD Biosciences). Post-acquisition analyses

were performed using CellQuest Pro (BD Biosciences) or FlowJo software. For AlamarBlue (Life

Technologies) assays, cells were cultured in 96-well poly-HEMA-coated plates as above for 5 days.

AlamarBlue reagent (Life Technologies) was added to each sample and incubated at 37˚C at 5% CO2

for 24 hr. Viability was analyzed by resorufin production via absorbance at 570/600 nm using a Syn-

ergy HTX spectrophotometer (BioTek Instruments).

Cisplatin cytotoxicity
Cells (10,000 in 90 ml) were plated in tissue culture-treated 96-well plates (Costar). At 24 hr, increas-

ing concentrations of cisplatin were added in growth media (10 ml), and the number of viable cells

determined at 72 hr using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Prom-

ega). Measurement of cell resistance to CP-induced cytotoxicity were performed by colorimetric XTT

cell staining (Sigma). In 2D culture, OVCAR10-CP and OVCAR10 cells exhibit 10.9 ± 2.2 mM and

1.4 ± 0.6 mM EC50 values to CP treatment, respectively. A2780-CP70 and A2780 cells exhibit

62.2 ± 8.7 mM and 5.6 ± 3.2 mM EC50 values to CP treatment, respectively. EC50 values were calcu-

lated using Prism (v7, GraphPad).

ALDEFLUOR assay
The ALDEFLUOR fluorescent assay (Stemcell Technologies) was used to measure cell-associated

ALDH activity. Cells were cultured as tumorspheres, treated with the indication concentrations of cis-

platin or VS-4718 for 5 days, collected by centrifugation, dissociated by trypsinization, resuspended

in Aldefluor assay buffer containing ALDH substrate (BODIPY-aminoacetaldehyde), and incubated

for 45 min at 37˚C with or without the ALDH inhibitor diethylamino-benzaldehyde (DEAB). AldeRed

substrate (EMD Millipore) was used with cells expressing GFP. Individual gates were used to deter-

mine the percentage of ALDEFLUOR-positive cells per experimental point relative to DEAB-inhibitor

treated controls. For analysis of ALDH activity in ascites-associated cells, pooled isolates from perito-

neal washings of each experimental group were dissociated by trypsinization, treated with red blood

cell lysis buffer (Biolegend), and processed as described above.

Quantitative RT-PCR
Total RNAs were extracted using PureLink RNA Mini Kit (Thermo) and cDNA prepared using the

High-Capacity cDNA Reverse Transcription Kit (Thermo) from 1 mg total RNA. Target transcripts

were amplified using a LightCycler 480 (Roche Applied Science), Premix Ex Taq probe qPCR Kit,

iTaq Universal SYBR Green Supermix (Bio-Rad) with cDNA template and primers Table 2. according

to manufacturer instructions. Target gene expression was normalized to 60S ribosomal protein L19
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(RPL19) as a housekeeping gene control. Transcript levels were calculated using the DDCT (cycle

threshold) method.

Protein analyses
Protein extracts of cells were prepared using a lysis buffer containing (25 mM HEPES, pH 7.5, 150

mM NaCl, 10% glycerol, 10 mM MgCl2, 1 mM EDTA, 10 mM NaF, 1 mM Na3VO4) with 1% NP-40,

0.25% sodium deoxycholate, 0.1% SDS and protease inhibitors (Roche Diagnostics). Tumors were

homogenized in lysis buffer without sodium deoxycholate using Precellys24 (Bertin Instruments)

bead disruption. Total protein levels in lysates were determined through a bicinchoninic acid assay

(Pierce), proteins were resolved by SDS-PAGE (NuPAGE 4–12% Tris-Bis gels, Thermo), and trans-

ferred to polyvinylidene difluoride membranes (Immobilon-FL, Millipore) for immunoblotting. Levels

of protein expression and/or phosphorylation were detected with specific primary antibodies and

IRDye 680 goat anti-mouse and IRDye 800 goat anti-rabbit secondary antibodies. Protein bands

were visualized and quantified using the Odyssey Infrared Imaging System (Li-Cor Biosciences).

Alternatively, HRP-conjugated secondary antibodies were visualized by chemiluminescence detec-

tion (ChemiDoc, BioRad).

Tumor growth in mice
All animal experiments were performed in accordance with The Association for Assessment and

Accreditation for Laboratory Animal Care guidelines and approved by the UCSD Institutional Animal

Care and Use Committee (S07331). A2780 or A2780-CP70 tumor growth was evaluated by IP injec-

tion of 4 million pChili-Luciferase-labeled cells mixed with Matrigel into 9-week-old female NOD

SCID gamma mice (Jackson Laboratory). IVIS imaging (Day 4, 11, 18, and 23) was used to monitor

tumor growth. On Day 5, mice were randomized to a control (saline injection); chemotherapy group

Table 2. Primers used for qRT-PCR.

Gene Sequence

musRecql4F CACCTGAGTCGAGCTGCA A

musRecql4R AGCCTCTTCCCATAGTCTTGT

musSpc24F AGGCTACGTCAGCTCATCAC

musSpc24R ATCATCCCTGGCTCGCATTC

musPkmyt1F TACCTAGGGATGCCCTGGAC

musPkmyt1R CAGGCTGAGGAGGTTCCTTG

musDscc1F AAGTGTGGCAGCAGAGTGTT

musDscc1R TCTCTCCGCACAAATCTTGGA

musRnf144bF GCAAGAACTGCAAGCACACA

musRnf144bF CCCACTACCTGTGTTCGGTT

musWnt4 F TGCGAGGTAAAGACGTGCTG

musWnt4 R CTTGAACTGTGCATTCCGAGG

musKlf5F CCGGAGACGATCTGAAACACG

musKlf5R GTTGATGCTGTAAGGTATGCCT

musAmigo2F GGAGGTTCAAGCTGGCTGAT

musAmigo2R GATGCCTCTCAGCTGTCTCC

musFos F CGGCATCATCTAGGCCCAG

musFos R TCTGCTGCATAGAAGGAACCG

musNdufa4l2F AAAGACACCCTGGGCTCATC

musNdufa4l2R TGTAGTCGGTTGAAACGGCA

musRPL191F TGATCTGCTGACGGAGTTG

musRPL191R GGAAAAGAAGGTCTGGTTGGA

DOI: https://doi.org/10.7554/eLife.47327.034
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(CPT) receiving IP injection of cisplatin (3 mg/kg) plus paclitaxel (2 mg/kg) at Day 5, 12, and 19; VS-

4718 FAK inhibitor (100 mg/kg) via oral gavage twice daily (BID); or CPT plus FAK inhibitor treat-

ment. At Day 24, mice were euthanized, omental tumors excised, and remaining peritoneal meta-

static sites quantified by dTomato fluorescence using an OV100 Small Animal Imaging Station

(Olympus) and ImageJ software.

For KMF intraperitoneal tumor growth, cells were transduced with a lentiviral vector expressing

dTomato and luciferase (pUltra-Chili-Luc) and were enriched by FACS. Cells were mixed with PBS +

50% Matrigel (Growth factor reduced, Corning) for a final concentration of 4 � 106 cells per 200 mL

for injection in 10-week-old C57Bl/6N mice (Charles River). Tumor growth was monitored via lucifer-

ase bioluminescent imaging (IVIS, Perkin Elmer). At the indicated times, ascites-associated cells were

recovered by peritoneal washings by injection and immediate removal of PBS (5 ml), followed by

erythrocyte lysis (RBC lysis buffer, eBioscience), Accutase (Corning) treatment for cell dissociation,

total cell enumeration (ViCell XR, Beckman) and trypan blue staining (viability >95%). Flow cytometry

(BD LSRFortessa) was used to identify dTomato+ and CD45-negative (rat anti-mouse CD45, clone

30-F11, BD Biosciences) tumor cells.

Exome sequencing and CNV analysis
Exome sequencing was performed by Novogene (Beijing, China), using genomic DNA (1 mg) isolated

from ID8 or KMF cells. Genomic DNA was sheared into 180–280 bp fragments using a Covaris Soni-

cator (Covaris). Exome enrichment and sequencing libraries were generated using Agilent SureSelect

Mouse All Exon kit (Agilent Technologies) following manufacturer’s recommendations. Each exome

was sequenced using a 150 bp paired-end protocol on the Illumina HiSeq platform, generating 47M

reads for the ID8 sample and 61M reads for the KMF sample. (https://software.broadinstitute.org/

gatk/best-practices). Reads were aligned with BWA MEM 0.7.12 (Li and Durbin, 2009) to mouse

genome GRCm38_68. Variants were called with GATK 3.4 according to the Broad Institute’s best

practices (https://software.broadinstitute.org/gatk/best-practices) (McKenna et al., 2010). Process-

ing after alignment was carried out with SAMtools v.1.1 (Li and Durbin, 2009). Variants were anno-

tated with ANNOVAR (Wang et al., 2010). Copy number variants were called from the same

alignments with CNVkit (Talevich et al., 2016), visualized in the Integrative Genomics Viewer

(Robinson et al., 2011) using standard parameters, with ID8 as normal and KMF as tumor samples.

Ninety percent of exons were sequenced at 100X.

RNA sequencing and analyses
Total RNA was isolated from cells growing in suspension using PureLink RNA Mini Kit (Thermo

Fisher). Three independent samples of RNA were isolated from ID8 or KMF cells grown in 3D Promo-

Cell XF media as tumorsperes for 5 days at various cell passages. RNA sequencing was performed

by Novogene (Beijing, China). Three replicate RNA samples were obtained from KT13 FAK KO,

GFP-FAK WT, GFP-FAK R454 (kinase-inactive), and FAK KO expressing a DGSK b-catenin. RNA

library preparation was performed using NEB Next Ultra RNA Library Prep Kit (New England Biol-

abs). Each transcriptome was sequenced using a 150 bp paired-end protocol on the Illumina HiSeq

platform. At least 60 million clean reads were generated per sample. Reads were mapped (>90%) to

the reference genome using TopHat2 (Kim et al., 2013). Novogene analyses used ClusterProfiler

software for enrichment analysis, including GO Enrichment, DO Enrichment, KEGG and Reactome

database enrichment to analyze and visualize functional profiles of genomic coordinates, genes and

gene clusters. Novogene performed differential expression analysis of two conditions/groups by

using the DESeq2 R package. Clustering and grouping analyses used transcripts with FPKM values > 1

and an adjusted p value < 0.05. Each dataset was subject to Gene Set Enrichment Analysis (GSEA)

and The Molecular Signatures Database (MSigDB) analysis. The murine FAK activity and b-catenin

targets were compared with the total list of all genes gained in HGSOC by Genomic Identification of

Significant Targets in Cancer (GISTIC, ov_tcga).

Ovarian cancer PTK2 transcriptomic survival analysis
Survival analysis was performed using a database of ovarian cancer samples (Pénzváltó et al.,

2014). The TCGA dataset was used to link copy number gains to gene expression (Cancer Genome

Atlas Research Network, 2011). Samples with copy number gains were designated into one cohort
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and all remaining samples were designated into a second cohort. Gene expression was compared

between cohorts using a non-parametric Mann-Whitney test. Genes with a fold change over two and

a p-value below 1E-04 were accepted as statistically significant. The mean expression of all signifi-

cant genes was computed for each sample and was used in subsequent analyses for the selected

gene. Cox proportional hazards regression was performed for relapse-free survival and for overall

survival. Correlation between mRNA expression and survival was assessed using the Kaplan-Meier

plotter (Gyorffy et al., 2012) for PTK2 mRNA levels in 1435 annotated ovarian cancer patient sam-

ples. Selections were: relapse-free survival, split patients by median, stage (all), histology (serous),

grade (all), debulk (all), and chemotherapy treatments (all).

Proteomics
ECM-enriched protein extracts from tumorsphere cultures in PromoCell were prepared by trypsin

digestion as described (Ojalill et al., 2018). Peptides were separated by a nanoflow HPLC system

(Easy-nLC1000, Thermo) coupled to a Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer

(Thermo). A full MS (mass spectrum) scan over the mass-to-charge (m/z) range of 300–2000 with a

resolution of 140,000 followed by data-dependent acquisition of with an isolation window of 2.0 m/z

and a dynamic exclusion time of 20 s was performed. The top 10 ions were fragmented by higher

energy collisional dissociation (HCD) with a normalized collision energy of 27 and scanned over the

m/z range of 200–2000 with a resolution of 17,500. After the MS2 scan for each of the top 10 ions

had been obtained, a new full MS scan was acquired and the process repeated until the end of the

70 min run. Three repeated runs per sample were performed. Tandem mass spectra were searched

using MaxQuant software (v1.5.2.8) against reviewed (SwissProt) mouse sequences of UniProtKB

release 2018_08. Peptide-spectrum-match- and protein-level false discovery rates were set at 0.01.

Carbamidomethyl (C), as a fixed modification, and oxidation (M, P, K) as dynamic modifications were

included.

A maximum of two missed cleavages was allowed. The LC-MS profiles were aligned, and the

identifications were transferred to non-sequenced or non-identified MS features in other LC-MS runs

(matching between runs). The extracted ion intensities of all peptides matching to the same protein

from the three technical replicates were summed. Proteins were determined as detected in sample

identification was derived from at least two unique peptide identifications. Contaminant proteins

(according to the contaminants listed in MaxQuant), reverse identifications, and identifications only

by site were removed. Only the proteins containing ‘cell membrane’, ‘plasma membrane’, ‘cell sur-

face’, ‘extracellular matrix’ or ‘secreted’ in the cellular component gene ontology or in the subcellu-

lar location definition in the UniProt database were included in the final list. Samples were

normalized by sum of protein intensities.

Immunohistochemistry
Mouse tumors were divided into thirds and either processed for protein lysates, fixed in formalin, or

frozen in optimal cutting temperature compound. For immunohistochemical staining, paraffin-

embedded tumors were sectioned, mounted onto glass slides, deparaffinized, rehydrated, proc-

essed for antigen retrieval, and peroxidase quenched as described (Tancioni et al., 2014). Tissues

were blocked (PBS with 1% BSA, and 0.1% Triton X-100) for 45 min at room temperature and incu-

bated with anti-PAX8 (1:200), anti-FAK (1:200), anti-Ki67 (1:500), anti-active b-catenin (1:800) or anti-

pY397 FAK (1:100) in blocking buffer overnight. FAK pY397 antibodies were pre-incubated with 200-

fold molar excess of FAK pY397 peptide (Abcam) for 12 hr at RT prior to use in IHC staining. Proc-

essing with biotinylated goat-anti-rabbit or goat-anti-mouse IgG, Vectastain ABC Elite, and diamino-

benzidine were used to visualize antibody binding. Slides were counterstained with hematoxylin.

Colon or breast carcinoma tumor samples were used as controls for active b-catenin staining. High-

resolution digital scans were acquired (Aperio CS2 scanner) using Image Scope software (Leica Bio-

systems). Images were also acquired using an upright microscope (Olympus BX43) with a color cam-

era (Olympus SC100). A board-certified pathologist evaluated H and E, Pax8, pY397 FAK, or Ki67

stained images of patient tumor samples in a blinded manner. Quantification was performed using

Aperio Image Analysis software (v12.3.0.5056) using the positive pixel count (v9) algorithm. Pax8-

positive regions were identified and then these regions were manually-transposed onto images from
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FAK pY397-stained serial section slides. Average intensity (I-Avg) values were obtained and percent

FAK pY397 was calculated.

Frozen tumors were thin sectioned (7 mm) using a cryostat (Leica), mounted onto glass slides,

fixed with acetone (or with 4% paraformaldehyde) for 10 min, permeabilized (PBS with 0.1% Triton)

for 1 min, and blocked (PBS with 8% goat serum) for 2 hr at room temperature. Sections were incu-

bated in anti-ALDH1A1 (1:100) or anti-pY397 FAK (1:100) in PBS with 2% goat serum overnight.

Antibody binding was detected with goat anti-rabbit conjugated with Alexa Fluor-488. Cell nuclei

were visualized using Hoechst 33342 stain (Thermo). Images were sequentially captured at 20X mag-

nification (UPLFL objective, 1.3 NA; Olympus) using a monochrome charge-coupled camera (ORCA

ER; Hamamatsu), an inverted microscope (IX81; Olympus), and Slidebook software (Intelligent Imag-

ing). Images were pseudo-colored, overlaid, merged using Photoshop (Adobe), and quantified using

Image J.

Statistics
Statistical difference between groups was determined using one-way or two-way ANOVA with

Tukey, Bonferroni’s or Fisher’s LSD post-hoc analysis. Differences between pairs of data were deter-

mined using an unpaired two-tailed Student’s t test. For the IHC analysis the differences between

pairs of data were calculated using a paired two-tailed Student’s t test. All statistical analyses were

performed using Prism (GraphPad Software, v7). p-Values of <0.05 were considered significant.
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Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA,
Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon
J, Gourley C, et al. 2015. Rethinking ovarian Cancer II: reducing mortality from high-grade serous ovarian
Cancer. Nature Reviews Cancer 15:668–679. DOI: https://doi.org/10.1038/nrc4019, PMID: 26493647

Cancer Genome Atlas Research Network. 2011. Integrated genomic analyses of ovarian carcinoma. Nature
474:609–615. DOI: https://doi.org/10.1038/nature10166, PMID: 21720365

Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, Guan JL, Acevedo
LM, Weis SM, Cheresh DA, Schlaepfer DD. 2012. VEGF-induced vascular permeability is mediated by FAK.
Developmental Cell 22:146–157. DOI: https://doi.org/10.1016/j.devcel.2011.11.002, PMID: 22264731

Chen G, Gao C, Gao X, Zhang DH, Kuan SF, Burns TF, Hu J. 2018. Wnt/b-Catenin pathway activation mediates
adaptive resistance to BRAF inhibition in colorectal Cancer. Molecular Cancer Therapeutics 17:806–813.
DOI: https://doi.org/10.1158/1535-7163.MCT-17-0561, PMID: 29167314

Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K,
Liu Y, Turk MJ, Thedieck K, Hurez V, Li R, Vadlamudi R, Curiel TJ. 2016. Tumor-Intrinsic PD-L1 signals regulate
cell growth, pathogenesis, and autophagy in ovarian Cancer and melanoma. Cancer Research 76:6964–6974.
DOI: https://doi.org/10.1158/0008-5472.CAN-16-0258, PMID: 27671674

Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD, Matei D. 2015. b-Catenin-regulated ALDH1A1 is a
target in ovarian Cancer spheroids. Oncogene 34:2297–2308. DOI: https://doi.org/10.1038/onc.2014.178,
PMID: 24954508

Domcke S, Sinha R, Levine DA, Sander C, Schultz N. 2013. Evaluating cell lines as tumour models by comparison
of genomic profiles. Nature Communications 4:2126. DOI: https://doi.org/10.1038/ncomms3126, PMID: 2383
9242

Fagnocchi L, Zippo A. 2017. Multiple roles of MYC in integrating regulatory networks of pluripotent stem cells.
Frontiers in Cell and Developmental Biology 5:7. DOI: https://doi.org/10.3389/fcell.2017.00007, PMID: 282176
89

Diaz Osterman et al. eLife 2019;8:e47327. DOI: https://doi.org/10.7554/eLife.47327 30 of 34

Research article Cancer Biology

https://doi.org/10.7554/eLife.47327.035
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD013062
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD013062
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD013062
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD013062
https://www.ncbi.nlm.nih.gov/sra?term=SRP194638
https://www.ncbi.nlm.nih.gov/sra?term=SRP194638
https://www.ncbi.nlm.nih.gov/sra?term=SRP194638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129099
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129099
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129099
https://doi.org/10.1016/j.devcel.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/20708588
http://www.ncbi.nlm.nih.gov/pubmed/20708588
https://doi.org/10.1073/pnas.96.9.4947
https://doi.org/10.1073/pnas.96.9.4947
http://www.ncbi.nlm.nih.gov/pubmed/10220399
https://doi.org/10.1038/nrc4019
http://www.ncbi.nlm.nih.gov/pubmed/26493647
https://doi.org/10.1038/nature10166
http://www.ncbi.nlm.nih.gov/pubmed/21720365
https://doi.org/10.1016/j.devcel.2011.11.002
http://www.ncbi.nlm.nih.gov/pubmed/22264731
https://doi.org/10.1158/1535-7163.MCT-17-0561
http://www.ncbi.nlm.nih.gov/pubmed/29167314
https://doi.org/10.1158/0008-5472.CAN-16-0258
http://www.ncbi.nlm.nih.gov/pubmed/27671674
https://doi.org/10.1038/onc.2014.178
http://www.ncbi.nlm.nih.gov/pubmed/24954508
https://doi.org/10.1038/ncomms3126
http://www.ncbi.nlm.nih.gov/pubmed/23839242
http://www.ncbi.nlm.nih.gov/pubmed/23839242
https://doi.org/10.3389/fcell.2017.00007
http://www.ncbi.nlm.nih.gov/pubmed/28217689
http://www.ncbi.nlm.nih.gov/pubmed/28217689
https://doi.org/10.7554/eLife.47327


Fan Z, Duan J, Wang L, Xiao S, Li L, Yan X, Yao W, Wu L, Zhang S, Zhang Y, Li Y, Zhu X, Hu Y, Zhang D, Jiao S,
Xu X. 2019. PTK2 promotes Cancer stem cell traits in hepatocellular carcinoma by activating wnt/b-catenin
signaling. Cancer Letters 450:132–143. DOI: https://doi.org/10.1016/j.canlet.2019.02.040, PMID: 30849480

Gao C, Chen G, Kuan S-F, Zhang DH, Schlaepfer DD, Hu J. 2015. FAK/PYK2 promotes the wnt/b-catenin
pathway and intestinal tumorigenesis by phosphorylating GSK3b. eLife 4:e10072. DOI: https://doi.org/10.7554/
eLife.10072

Georgakilas AG, Martin OA, Bonner WM. 2017. p21: a Two-Faced genome guardian. Trends in Molecular
Medicine 23:310–319. DOI: https://doi.org/10.1016/j.molmed.2017.02.001, PMID: 28279624

Goode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M, Lawrenson K, Widschwendter M, Vierkant RA,
Larson MC, Kjaer SK, Birrer MJ, Berchuck A, Schildkraut J, Tomlinson I, Kiemeney LA, Cook LS, Gronwald J,
Garcia-Closas M, Gore ME, Campbell I, et al. 2010. A genome-wide association study identifies susceptibility
loci for ovarian Cancer at 2q31 and 8q24. Nature Genetics 42:874–879. DOI: https://doi.org/10.1038/ng.668,
PMID: 20852632

Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D, Cowin P, Sridhar A, Williams LH,
Boyle SE, Yanaihara N, Okamoto A, Urashima M, Smyth GK, Campbell IG, Bowtell DD, Australian Ovarian
Cancer Study. 2010. Copy number analysis identifies novel interactions between genomic loci in ovarian
Cancer. PLOS ONE 5:e11408. DOI: https://doi.org/10.1371/journal.pone.0011408, PMID: 20844748
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