123 research outputs found

    Carbonate Control of H(2) and Ch(4) Production in Serpentinization Systems at Elevated P-Ts

    Get PDF
    Serpentinization of forsteritic olivine results in the inorganic synthesis of molecular hydrogen (H(2)) in ultramafic hydrothermal systems (e. g., mid-ocean ridge and forearc environments). Inorganic carbon in those hydrothermal systems may react with H(2) to produce methane (CH(4)) and other hydrocarbons or react with dissolved metal ions to form carbonate minerals. Here, we report serpentinization experiments at 200 degrees C and 300 bar demonstrating Fe(2+) being incorporated into carbonates more rapidly than Fe(2+) oxidation (and concomitant H(2) formation) leading to diminished yields of H(2) and H(2)-dependent CH(4). In addition, carbonate formation is temporally fast in carbonate oversaturated fluids. Our results demonstrate that carbonate chemistry ultimately modulates the abiotic synthesis of both H(2) and CH(4) in hydrothermal ultramafic systems and that ultramafic systems present great potential for CO(2)-mineral sequestration

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru

    ADH1B Arg47His Polymorphism Is Associated with Esophageal Cancer Risk in High-Incidence Asian Population: Evidence from a Meta-Analysis

    Get PDF
    with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis.. Heterogeneity among studies and their publication bias were also tested. can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32–78.07). allele

    A rare truncating BRCA2 variant and genetic susceptibility to upper aerodigestive tract cancer

    Get PDF
    © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Funding This work was supported the National Institutes of Health (R01CA092039 05/05S1) and the National Institute of Dental and Craniofacial Research (1R03DE020116). Notes The authors thank all of the participants who took part in this research and the funders and technical staff who made this study possible. We acknowledge and thank Simone Benhamou (INSERM, France) for sample contributions. We also acknowledge and thank The Cancer Genome Atlas initiative, whose data contributed heavily to this study.Peer reviewedPublisher PD

    The 12p13.33/RAD52 locus and genetic susceptibility to squamous cell cancers of upper aerodigestive tract

    Get PDF
    Acknowledgments: The authors thank all of the participants who took part in this research and the funders and support and technical staff who made this study possible. We also acknowledge and thank The Cancer Genome Atlas initiative whose data contributed heavily to this study. Funding: Funding for study coordination, genotyping of replication studies and statistical analysis was provided by the US National Institutes of Health (R01 CA092039 05/05S1) and the National Institute of Dental and Craniofacial Research (1R03DE020116). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations

    Full text link
    Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice

    First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

    Get PDF
    Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_{e} ~ 10^{4–7} cm^{−3}, magnetic field strength B ~ 1–30 G, and electron temperature T_{e} ~ (1–12) × 10^{10} K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) × 10^{−4} M⊙ yr^{−1}

    Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks

    Get PDF
    corecore