96 research outputs found

    Zoledronic acid induces apoptosis via stimulating the expressions of ERN1, TLR2, and IRF5 genes in glioma cells

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor that affects older people. Although the current therapeutic approaches for GBM include surgical resection, radiotherapy, and chemotherapeutic agent temozolomide, the median survival of patients is 14.6 months because of its aggressiveness. Zoledronic acid (ZA) is a nitrogen-containing bisphosphonate that exhibited anticancer activity in different cancers. The purpose of this study was to assess the potential effect of ZA in distinct signal transduction pathways in U87-MG cells. In this study, experiments performed on U87-MG cell line (Human glioblastoma-astrocytoma, epithelial-like cell line) which is an in vitro model of human glioblastoma cells to examine the cytotoxic and apoptotic effects of ZA. IC50 dose of ZA, 25 μM, applied on U87-MG cells during 72 h. ApoDIRECT In Situ DNA Fragmentation Assay was used to investigate apoptosis of U87MG cells. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) (LightCycler480 System) was carried out for 48 gene expression like NF-κB, Toll-like receptors, cytokines, and inteferons. Our results indicated that ZA (IC50 dose) increased apoptosis 1.27-fold in U87MG cells according to control cells. According to qRT-PCR data, expression levels of the endoplasmic reticulum-nuclei-1 (ERN1), Toll-like receptor 2 (TLR2), and human IFN regulatory factor 5 (IRF5) tumor suppressor genes elevated 2.05-, 2.08-, and 2.3-fold by ZA, respectively, in U87MG cells. Our recent results indicated that ZA have a key role in GBM progression and might be considered as a potential agent in glioma treatment. © 2015, International Society of Oncology and BioMarkers (ISOBM)

    Monitoring of trace metals, biochemical composition and growth of Axillary seabream (Pagellus acarne Risso, 1827) in offshore Copper alloy net cage

    Get PDF
    The study was conducted to assess trace metal contents, biochemical composition and growth performance of axillary seabream (Pagellus acarne Risso, 1827) cultured in a copper alloy mesh cage. A total of 400 axillary seabream (initial mean weight: 176.0±14.0 g), a new candidate species for the Mediterranean aquaculture, were stocked into a high-density polyethylene frame gravity cage and fed a commercial seabream diet for a period of 6 months. At the end of the feeding trial, fish reached a final weight of 264.8±16.8 g with a weight increase of 88.8 g and a feed conversion rate of 2.51. Overall, relative growth rate, specific growth rate and feed conversion ratio were satisfactory and comparable to the pelagic fishes such as gilthead seabream or European seabass, which are presently the main fish species for the Mediterranean aquaculture industry. Trace elements in fish grown in copper alloy net cages over a 6-month period showed satisfactory results, as the metal concentrations in fish tissues such as liver, skin, muscle and gills were below the reported upper limits for human consumption, indicating that copper alloy net is an acceptable and safe material for finfish cage aquaculture. Furthermore, from the growth performance data obtained in the present study, it can be concluded that axillary seabream showed potential for cage farming, and thus is a promising new candidate for the Mediterranean aquaculture industry

    Angiogenesis Markers Quantification in Breast Cancer and Their Correlation with Clinicopathological Prognostic Variables

    Get PDF
    Tumoural angiogenesis is essential for the growth and spread of breast cancer cells. Therefore the aim of this study was to assess the diagnostic performance of angiogenesis markers in tumours and there reflecting levels in serum of breast cancer patients. Angiogenin, Ang2, fibroblast growth factor basic, intercellular adhesion molecule (ICAM)-1, keratinocyte growth factor (KGF), platelet-derived growth factor-BB, and VEGF-A were measured using a FASTQuant angiogenic growth factor multiplex protein assay. We observed that breast cancer tumours exhibited high levels of PDGF-BB, bFGF and VEGF, and extremely high levels of TIMP-1 and Ang-2, whereas in serum we found significantly higher levels of Ang-2, PDGF-BB, bFGF, ICAM-1 and VEGF in patients with breast cancer compared to the benign breast diseases patients. Moreover, some of these angiogenesis markers evaluated in tumour and serum of breast cancer patients exhibited association with standard clinical parameters, ER status as well as MVD of tumours. Angiogenesis markers play important roles in tumour growth, invasion and metastasis. Our results suggest that analysis of angiogenesis markers in tumour and serum of breast cancer patients using multiplex protein assay can improve diagnosis and prognosis in this diseases

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    The effect of sea water on laminated wooden material

    Get PDF
    In the present study, black pine samples laminated with epoxy and polyurethane glues were treated with various wood preservative chemicals and made subject to seawater for one year. The sampleswere examined from the point of view of physical features such as changes in odor and color as well as their mechanical values in 3-month periods. For this purpose, the samples were made subject tobending tests perpendicular to the fibers, compression tests parallel to the fibers and adhesion tests. As a result of this study, it was observed that, non-impregnated samples were excessively decayed andthey were so decomposed and destroyed that they could not be used anymore within the first 6 months. It was determined that, sea insects nested on the said samples and began to live there, sea wormsdestroyed the wooden surfaces by drilling them, the said surfaces were covered with seaweed, the surfaces became extremely soft and there were white decays on some regions. In case of impregnatedsamples, very small changes occurred in odor and color and moreover, any decay was not seen. Also, significant changes were observed as a result of mechanical tests
    corecore