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(PAH) causes elevation of phenylalanine levels in blood and other body fluids result-

Email: Filipa.Ferreira@insa.min-saude.pt Persistently high levels of phenylalanine lead to irreversible damage to the nervous
system. Therefore, early diagnosis of the affected individuals is important, as it can
prevent clinical manifestations of the disease.

Methods: In this report, the biochemical and genetic findings performed in 223 pa-
tients diagnosed through the Portuguese Neonatal Screening Program (PNSP) are
presented.

Results: Overall, the results show that a high overlap exists between different types

of variants and phenylalanine levels. Molecular analyses reveal a wide mutational
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spectrum in our population with a total of 56 previously reported variants, most of
them found in compound heterozygosity (74% of the patients). Intragenic polymor-
phic markers were used to assess the haplotypic structure of mutated chromosomes
for the most frequent variants found in homozygosity in our population (p.Ile65Thr,
p-Arg158GIn, p.Leu249Phe, p.Arg261Gln, p.Val388Met, and c.1066-11G>A).

Conclusion: Our data reveal high heterogeneity at the biochemical and molecular

levels and are expected to provide a better understanding of the molecular basis of this

KEYWORDS

population

1 | INTRODUCTION

Phenylketonuria (PKU; OMIM #261600) is an autoso-
mal recessive genetic disorder caused by the deficiency
in the hepatic enzyme phenylalanine hydroxylase (PAH;
OMIM #612349) (Scriver et al., 1995) that converts phe-
nylalanine into tyrosine requiring the cofactor tetrahydro-
biopterin (BH4). Whenever the enzymatic activity of PAH
(EC 1.14.16.1) is impaired, the essential amino acid phenyl-
alanine cannot be hydroxylated into tyrosine, resulting in the
elevation of phenylalanine, and its metabolic derivatives in
blood and other body fluids. The high blood levels of phenyl-
alanine can result in growth failure, microcephaly, seizures,
and psychomotor/intellectual deficit and growth failure, due
to a marked accumulation of phenylalanine and the toxic
products of its metabolism (Erlandsen & Stevens, 1999;
Madden, 2004). When phenylalanine in high levels cross the
blood-brain barrier, it causes irreversible structural damage
to the central nervous system (Anderson & Leuzzi, 2010).
The enzyme PAH requires a cofactor; the tetrahydrobiopterin
(BH4), which is also the cofactor in tyrosine and tryptophan
hydroxylation reactions. About 1%—2% of cases of hyperphe-
nylalaninemia (HPA) are due to variants in genes coding for
enzymes involved in BH4 biosynthesis or regeneration (Blau
et al., 2001; Thony & Blau, 2006). However, some patients
with defects in BH4 biosynthesis, such as in Segawa disease
and sepiapterin reductase deficiency, do not show hyperphe-
nylalaninemia (Bonafé et al., 2001; Ichinose et al., 1994).
In addition, certain variants of PKU are responsive to BH4
(Trefz et al., 2009).

The human PAH gene covers approximately 100 kb of ge-
nomic DNA and encodes a protein of 452 amino acids, which
are assembled in a functional homotetramer. This gene consists
of 13 exons and 12 introns, and has been mapped on chromo-
some 12, band region q23.2 (Donlon et al., 2014; Scriver et al.,
1995). Over 1000 variants in the PAH gene have been associated
with PKU in the PAHvdb (Phenylalanine Hydroxylase Gene

disease and to provide clues to elucidate genotype—phenotype correlations.

biochemical and genetic findings, haplotypic study, mutation spectrum, phenylketonuria, Portuguese

Locus-Specific Database, PAHdb; http://www.pahdb.mcgill.
ca/), and BIOPKU (http://www.biopku.org) databases, pri-
marily from Caucasian populations (Blau et al., 2014). Exonic
point mutations comprise about 90% of all variants and the next
most frequently occurring type is the splice junction variant
c.1066-11G>A (IVS10-11G>A) (Birk et al., 2007; Guldberg,
Henriksen, et al., 1993; Pérez et al., 1997). The position and na-
ture of the variant dictate its effect on the activity of the PAH
enzyme, which determines the hyperphenylalaninemia phe-
notype of the patient. Low or nonenzymatic activity results in
the classic phenylketonuria phenotype (MIM #261600). Other
variants only partly inhibit the enzyme activity, resulting in mild
phenylketonuria or mild hyperphenylalaninemia. The frequency
of the PKU disease and distribution of the PAH gene variants
differs between populations. In Europe, the prevalence is about
1:10,000 newborns (Loeber, 2007) but in some areas is higher
(Blau et al., 2010) as is for instance in the Andalusia population,
the incidence of this disorder is about 1:12,000 (Delgado et al.,
2011). Persistent hyperphenylalaninemia is detected in about
1:4000 live births in Turkey because of the high consanguin-
ity (Ashraf El-Metwally et al., 2018) and in Northern Ireland
(Ozalp et al., 2001; Zschocke et al., 1997). Finland has the lowest
PKU prevalence in Europe with 1:100,000 newborns, and for
this reason, this disease is not included in their neonatal screen-
ing program (Guldberg et al., 1995; Scriver & Kaufman, 2001).
In the United States of America, the prevalence is 1:15,000
(NIH, 2000). In Latin America, it varies from about 1:50,000
to 1:25,000 births being generally higher in southern Latin
America (Borrajo, 2007). The prevalence of PKU varies from
1:15,000 to 1:100,500 births in certain regions of China (Jiang
et al., 2003; Zhan et al., 2009), but is less than 1:200,000 in
Thailand (Pangkanon et al., 2009), and approximately, 1:70,000
in Japan (Aoki et al., 2007). In the Iranian population, the PKU
prevalence is higher, due to consanguinity, 1:6250 to 1:3704
(Ghiasvand et al., 2009; Habib et al., 2010; Koochmeshgi et al.,
2002; Vallian et al., 2003). Africa seems to have a very low prev-
alence of phenylketonuria (NIH, 2000).


http://www.chem.qmul.ac.uk/iubmb/enzyme/EC1/14/16/1.html
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1.1 | Brief PKU history
Until the 60 s, most children born with phenylketonuria be-
came neurologically disabled. In 1934, Folling and Uber
(1934) identified an excess of phenylketone bodies (a metab-
olites of phenylalanine) as the cause of a strange, musty odor
from the urine of two affected individuals. In 1953, Bickel re-
ported the effectiveness of a low phenylalanine diet in a child
with PKU (Bickel et al., 1953). Later, in the 1960s, Robert
Guthrie developed a bacterial inhibition test that could de-
tect high amounts of phenylalanine in a single dried blood
spot (Guthrie, 1961; Guthrie & Susi, 1963). The “Guthrie
test” made possible to carry out newborn screening testing
for PKU, enabling early diagnosis and dietary treatment of
the disease and prevention of the development of intellectual
disability (Wegberg et al., 2017). Nowadays, many countries
around the world, including Portugal since 1979, integrate
PKU, in their neonatal screening program (Blau et al., 2010).
The present study aims to identify and characterize
the variants underlying PKU in affected individuals in the
Portuguese PKU/HPA cohort, for a better understanding of
this disease. The information obtained will improve the diag-
nostic applicability of mutational analysis and the capacity to
predict the evolution of the disease.

2 | MATERIALS AND METHODS

2.1 | Patients

A total of 377 PKU/HPA patients were detected by the Portuguese
Newborn Screening Program from 1979 to 2018. Most samples
were collected between the third and sixth days of life.

The cohort here studied represents approximately 58%
(223/377) of the patients followed at the clinical reference
centers. The remaining 154 patients have molecular study
made in another metabolic laboratory center (Rivera et al.,
2011). Most of the patients were diagnosed by the newborn
screening program. The diagnosis of PKU/HPA is suspected
when a blood phenylalanine level >2.45 mg/dL (148 pmol/L)
in a newborn screening sample is found. Newborns with
blood phenylalanine levels persistently >2.45 mg/dL and a
Phe/Tyr ratio >1.5 are referred to treatment centers. Dietary
treatment (phenylalanine restriction) is implemented if levels
are >5.94 mg/dL (360 pmol/L).

2.2 | Molecular genetic analysis

Genomic DNA was automatically extracted from whole blood
or dried blood spots, using an automated method (EZ1 DNA
Blood 350 pl, or EZ1 DNA tissue kit, QTAGEN). The 13 pro-
tein-coding exons and flanking intronic sequences of PAH gene

Molecul . ic Medici
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(GenBank sequence: NM_000277.3; ENSGO00000171759;
ENST00000553106.6) were directly sequenced after PCR
amplification in an ABI PRISM™ 3130XL Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). Primers for
the 13 exons and exonic/intronic boundaries of the PAH gene
were designed employing the NCBI Primer-BLAST tool
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (see Table
S1). These primers were tagged with a M13 sequence for the
later cycle sequencing reaction. PCR was carried out using
the EmeraldAmp MAX PCR Master Mix (Takara Bio Inc.,
Kusatsu, Shiga, Japan). PCR products were purified with
ExoSAP-IT (Affymetrix, Santa Clara, CA, USA), and subjected
to a cycle sequencing reaction using BigDye Terminators v3.1
kit (Applied Biosystems, Foster City, CA, USA), and M13
primers [MI13(-21)F: 50-TGTAAAACGACGGCCAGT-30,
M13R: 50-CAGGAAACAGCTATGACC-30].

Protein sequences were aligned in Geneious v5.4 using
the default options (Drummond et al., 2010). The observed
variants were referred to the NCBI reference sequence for
human PAH gDNA (NG_008690.2.)

2.3 | Haplotypic analyses of the most
frequent variants

We used the information obtained from six previously de-
scribed polymorphic single nucleotide polymorphisms
(SNPs) [p.GIn232= (rs1126758), p.Val245= (rs1042503),
p.Leu385= (rs772897), c.168+19T>C (IVS2+19T>C;
rs17842947), ¢.441+47C>T (IVS4+47C>T; rs1718301) e
¢.510-54G>A (IVS5-54G>A; rs2251905)] in order to estab-
lish the haplotypic background of homozygous patients for
the six most frequent PAH disease-associated variants.

2.4 | Editorial policies and ethical
considerations

This study was approved by the institutional review board of
the Ethics Committee of National Health Institute Dr. Ricardo
Jorge on 03rd June 2020. All procedures were followed in ac-
cordance with the ethical standards of the responsible com-
mittee on human experimentation (institutional and national)
and with the Helsinki Declaration of 1975, as revised in 2000
and approved by the Ethics Committees.

3 | RESULTS

3.1 | Mutational spectrum

The PAH molecular analysis of the 223 patients revealed 56 dis-
tinct variants distributed in 129 genotype combinations (Tables
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TABLE 1 Mutational spectrum of PKU Portuguese patients

PAH
No Allele Gene activity

PAH mutation alleles frequency (%) DNA change Type region Protein domain (%)
p-(Phe39Leu) 1 0.22 c.117C>G Missense Exon 2 Regulatory 49
p-(Gly46Ser) 2 0.45 c.136G>A Missense Exon 2 Regulatory 16
p-(Leu48Ser) 1 0.22 c.143T>C Missense Exon 2 Regulatory 39
p-(Arg53His) 1 0.22 c.158G>A Missense Exon 2 Regulatory 79
p.(Phe55Leu) 1 0.22 c.165T>G Missense Exon 2 Regulatory na
p-(1le65Thr) 37 8.30 c.194T>C Missense Exon 3 Regulatory 33
p-(Arg68Ser) 7 1.57 c.204A>T Missense Exon 3 Regulatory 68
p.(Ser87Arg) 1 0.22 c.261C>A Missense Exon 3 Regulatory 24
p-(Asp129Gly) 2 0.45 c.386A>G Missense Exon 4 Regulatory na
p-(Asp129Tyr) 10 2.24 c.385G>T Missense Exon 4 Catalytic na
p-(Aspl45Val) 2 0.45 c.434A>T Missense Exon 4 Catalytic na
p-(Arg158Gln) 24 5.38 c.473G>A Missense Exon 5 Catalytic 10
p-(Ile164Val) 2 0.45 ¢c.490A>G Missense Exon 5 Catalytic na
p-(Argl76Leu) 19 4.26 c.527G>T Missense Exon 6 Catalytic 42
p.(Argl76%*) 11 2.47 c.526C>T Nonsense Exon 6 Catalytic <1
p-(Glul78Gly) 1 0.22 c.533A>G Missense Exon 6 Catalytic 39
p.(Glul82Lys) 1 0.22 c.544G>A Missense Exon 6 Catalytic na
p.(Val230Ile) 1 0.22 c.688G>A Missense Exao 6 Catalytic 63
p-(Arg241His) 1 0.22 c.722G>A Missense Exdo 7 Catalytic 23
p-(Arg243Gln) 6 1.35 c.728G>A Missense Exao 7 Catalytic 14
p-(Arg243%*) 2 0.45 c.727C>T Nonsense Exdo 7 Catalytic <1
p-(Leu249Phe) 22 4.93 c.745C>T Missense Exao 7 Catalytic na
p-(Arg252Trp) 18 4.04 c.754 C>T Missense Exon 7 Catalytic <1
p-(Arg261Gln) 63 14.13 c.782 G>A Missense Exon 7 Catalytic 44
p.(Arg261%*) 1 0.22 c.781C>T Nonsense Exon 7 Catalytic 1
p.(Arg270Lys) 10 2.24 c.809G>A Missense Exon 7 Catalytic <1
p.(Pro281Leu) 15 3.36 c.842C>T Missense Exon 7 Catalytic 2
p-(Arg297Cys) 5 1.12 c.889C>T Missense Exon 8 Catalytic na
p-(Arg297His) 1 0.22 c.890G>A Missense Exon 8 Catalytic 21
p.(Ala300Ser) 8 1.79 c.898G>T Missense Exon 8 Catalytic 31
p-(Leu308Phe) 1 0.22 ¢.922C>T Missense Exon 9 Catalytic na
p-(Ala309Asp) 1 0.22 c.926C>A Missense Exon 9 Catalytic na
p.(Ala309Val) 2 0.45 c.926C>T Missense Exon 9 Catalytic 42
p-(Ala313Val) 1 0.22 c.938C>T Missense Exon 9 Catalytic na
p.(Ala322Gly) 1 0.22 ¢.965C>G Missense Exon 9 Catalytic 75
p-(Leu348Val) 11 247 c.1042C>G Missense Exon 10 Catalytic 35
p-(Ser359Leu) 1 0.22 c.1076 C>T Missense Exon 11 Catalytic na
p-(Leu367Gln) 1 0.22 c.1100T>A Missense Exon 11 Catalytic na
p-(Val388Met) 37 8.30 c.1162G>A Missense Exon 11 Catalytic 28
p-(Glu390Gly) 5 1.12 c.1169A>G Missense Exon 11 Catalytic 62
p-(Ala403Val) 11 247 c.1208C>T Missense Exon 12 Catalytic 66
p-(Arg408Trp) 2 0.45 c.1222C>T Missense Exon 12 Catalytic 2
p.(Phe410Cys) 3 0.67 c.1229T>G Missense Exon 12 Oligomerization na

(Continues)
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TABLE 1 (Continued)
No Allele

PAH mutation alleles frequency (%) DNA change
p-(Tyr414Cys) 4 0.90 c.1241A>G
p-(Asp415Asn) 4 0.90 c.1243G>A
p-(Ile421Thr) 1 0.22 c.1262T>C
IVS2+5G>A 8 1.79 c.168+5G>A
IVS2+5G>C 1 0.22 c.168+5G>C
IVS4+5G>T 2 0.45 c.4414+5G>T
IVS7+1G>A 1 0.22 c.842+1G>A
IVS10-11G>A 60 13.45 c.1066-1 1G>A
IVS114+5G>A 1 0.22 c.1199+5G>A
IVS12+1G>A 5 1.12 c.1315+1G>A
p-(Phe55Leufs*6) 4 0.90 c.165delT
p-(Gly352Valfs*12) 1 0.22 c.1055delG
p-(Gly352Valfs*48) 1 0.22 ¢.1055delG

Molecul ti ic Medici
olecular Genetics & Genomic e_WI LEY:

PAH
Gene activity

Type region Protein domain (%)
Missense Exon 12 Oligomerization 57
Missense Exon 12 Oligomerization 72
Missense Exon 12 Oligomerization na
Splicing Intron 2 _ na
Splicing Intron 2 _ na
Splicing Intron 4 _ na
Splicing Intron 7 _ na
Splicing Intron 10 _ 5
Splicing Intron 11 _ na
Splicing Intron 12 _ <1
Frameshift Exon 2 Regulatory na

deletion
Frameshift Exon 10 Catalytic na

deletion
Frameshift Exon 10 Catalytic na

deletion

Note: The in vitro relative residual activity of PAH according to the PAHdb (http://www.pahdb.mcgill.ca) is also indicated (na — not available) (GenBank:

NM_000277.3; ENSG00000171759; ENST00000553106.6).

1 and S1). Most patients (73.5% of the cohort) were heterozy-
gous compounds. Among the homozygous individuals 17 carry
the ¢.782G>A (p.Arg261Gln) variant, 10 carry the c.1066-
11G>A (IVS10-11G>A) variant, 6 carry the c. 473G>A
(p-Arg158GlIn), and 5 patients the c.1162G>A (p.Val388Met)
variant. The remaining patients harbor one of the following
variants: ¢.194T>C (p.Ile65Thr), c.204A>T (p.Arg68Ser),
c.385G>T  (p.Aspl29Tyr),  c.526C>T  (p.Argl76%),
c.727C>T (p.Arg243%*), c.745C>T (p.Leu249Phe), c.754C>T
(p-Arg252Trp), ¢.809G>A  (p.Arg270Lys), ¢.842C>T
(p.Pro281Leu), c.1229T>G (p.Phe410Cys), c.168+5G>A
(AVS2+5G>A), and c.441+5G>T (IVS4+5G>T). Concerning
the type of variant found, the majority are missense replacements
(76.8%), followed by variants at splice sites (12.5%), nonsense
(5.4%), and frameshift deletions (5.4%). The two most preva-
lent pathogenic variants in our population are the ¢.782G>A
(p-Arg261Gln) found in 63 instances (14.13%) and the splicing
variant ¢.1066-11G>A (IVS10-11G>A), found in 60 (13.45%)
followed by the replacements ¢.1162G>A (p.Val388Met) and
¢.194T>C (p.Ile65Thr), 37 times each (8.3%).

These causative variants are distributed as follows: 35 in
the catalytic domain (62.5%), 10 in the regulatory domain
(17.85%), 4 in the tetramerization domain (7.14%), and 7
in the intronic regions (12.5%). No causative variants were
found in exon 1 and 13. The density of variants is higher in
exon 9, which presents five variants dispersed by only 54 nu-
cleotides. Previous studies have shown a higher frequency of
PAH variants in exon 7 (Abadie et al., 1989; Dworniczak,
Kalaydjieva, et al., 1991; Hamzehloei et al., 2012; Vallian

et al., 2003; Zare-Karizi et al., 2011). In fact, in our cohort,
the number of variants found in exon 7 is higher than the ones
found in other exons, but when the exon size is taken into ac-
count the highest proportion of variants is observed in exon 9.

3.2 | Biochemical phenotypic spectrum
Plasmatic blood levels of phenylalanine at the neonatal
screening are shown in Table S1. The relationship between
the biochemical phenotype (phenylalanine levels) and the
molecular genotype in homozygous patients for five variants
is shown in Figure 1. The variant associated with the wider
spectrum of phenylalanine levels is the c.1066-11G>A, for
which values ranging from 10.7 to 30 mg/dL are present
in homozygous patients. Individuals homozygous for the
c.745C>T (p.Leu249Phe) shows the lowest levels of pheny-
lalanine (average 10.53 mg/dL). The most common variant
c.782G>A (p.Arg261Gln) is associated with a mean value
of 14.37 mg/dL, whereas the c.473G>A (p.Arg158GlIn)
and c.1162G>A (p.Val388Met) variants reach values of
19.86 mg/dL and 12.69 mg/dL, respectively.

3.3 | Haplotypic analyses of the most
frequent variants

The information obtained with six previously described poly-
morphic single nucleotide polymorphisms (SNPs) was used to
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FIGURE 1 Levels of phenylalanine mutations found in the most frequent homozygous individuals (at the neonatal screening)
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FIGURE 2 Haplotypes observed in homozygous individuals carrying the most frequent variants in this study defined by six polymorphic
single nucleotide polymorphisms (SNPs) [p.GIn232= (rs1126758), p.Val245= (rs1042503), p.Leu385= (rs772897), c.168+19T>C (IVS2+19T>C;
1s17842947), c.441+47C>T (IVS4+47C>T; rs1718301) e ¢.510-54G>A (IVS5-54G>A; rs2251905)]. (Individuals carrying the ancestral alleles
are shown in unfilled circles, homozygosity for the derivate alleles is shown in red circles and heterozygosity is shown in half filled circles)

(GenBank: NM_000277.3; ENSG00000171759; ENST00000553106.6)

establish the haplotypic background of homozygous patients for
the six most frequent disease-associated PAH variants (Figure
2). For the c.782G>A (p.Arg261Gln) variant, seven patients
carry the most frequent haplotype (H1). Four patients carry H2
and H3 and both allelic combinations differ only in a single posi-
tion in relation to H1, from which they may have been derived.
The remaining six patients show six distinct haplotypes
indicating a high level of diversity, which is in accordance
to the fact that c¢.782G>A (p.Arg261GlIn), locates at a

hypermutable CpG dinucleotide and these may well rep-
resent independent origins for this variant (Zschocke &
Hoffmann, 1999). For the ¢.1066-11G>A, five out of ten
homozygous patients revealed the same haplotype (HI1)
and other three patients carry the haplotype H2, which dif-
fers from H1 in only the rs17842947-C allele. The variant
c.1162G>A (p.Val388Met) show three distinct haplotypes
yet H1 and H2 differ by one allele at the marker rs171830.
H3 differs from H2 at two positions; since this variant is not
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in a CpG site, it is likely that H2 and H3 haplotypes derivate
from the ancestral HI.

The ¢.473G>A (p.Arg158GlIn) variant shows two more fre-
quent haplotypes that differ at two positions, it is likely that it
may have occurred at least two independent times. The variant
c. 194T>C (p.Ile65Thr) shows two haplotypes with a single
allelic difference between them suggesting a single origin.

The ¢.745C>T (p.Leu249Phe) reveals a pattern that is
consistent with a single origin but only if there has been a
back mutation regarding the polymorphism rs17842947.
If this was not the case, it is possible that two independent
events will have contributed to the birth of this variant.

4 | DISCUSSION

In the late 70 s, the Portuguese Neonatal Screening Program
was established by the Ministry of Health, with phenylketonuria
(PKU) and later, in 1981, with congenital hypothyroidism (CH)
screening (Magalhdes et al., 1986; Magalhdes & Osorio, 1984;
Osorio et al., 1992; Osoério & Soares, 1987). PNSP is performed
in the whole Country and centralized in a single laboratory of
the National Health Institute Dr. Ricardo Jorge, in Porto, that
receives over 400 samples per day (86,000/year). Until 2004,
the phenylalanine value was obtained using the Quantase™
neonatal phenylalanine screening kit. In 2004, the development
of electrospray tandem mass spectrometry (MS/MS) allowed
the use of a single test to screen for 24 treatable inherited in-
born errors of metabolism, plus congenital hypothyroidism, and
since 2013, also cystic fibrosis (Marcao et al., 2018; Sousa et al.,
2015; Vilarinho et al., 2010).

Currently, PNSP is the state reference for the newborn screen-
ing, diagnosis, and follow-up of patients with PKU and is con-
sidered a medical success story. In Portugal, approximately 377
HPA patients are followed, and from these, 345 are PKU. The
birth prevalence of PKU in Portugal is estimated to be 1:10,772
(Newborn Screening Program — Annual Report 2018).

In our cohort, the most prevalent variant is c.782G>A
(p-Arg261Gln) variant (14.13%, Table 1). Its frequency, in
our study, is similar to that found in south European and
Mediterranean countries (Zare-Karizi et al., 2011). The hap-
lotypic analysis revealed a predominant combination in the
Portuguese patients although independent origins can also be
hypothesized given the fact that involves a CpG site.

The second most prevalent variant is the intronic c.1066-
11G>A (IVS10-11G>A)variant(13.45%). This variantis also the
second most common variant in the PAH knowledgebase. Given
its high frequency in the Mediterranean area, c.1066-11G>A
has been considered the “Mediterranean variant” (Aldamiz-
Echevarria et al., 2016; Okano et al., 1991; Rivera et al., 2011;
Vieira Neto et al., 2018; Zschocke, 2003). Interestingly, when we
look to its world distribution, it seems to have a decreasing rate
from the east to the west of the Mediterranean areas trough range
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expansion probably during the Neolithic period with the highest
relative frequencies in Turkey (32%) (Ozgiig et al., 1993), Iran
(26.07%) (Bonyadi et al., 2010; Hamzehloei et al., 2012; Zare-
Karizi et al., 2011), Bulgaria (25%) (Berthelon et al., 1991),
Greece (12.5%) (Traeger-Synodinos et al., 1994), south Italy
(8.8%) (Daniele et al., 2009; Dianzani et al., 1995; Giannattasio
etal., 2001), and Spain (9.7%) (Aldamiz-Echevarria et al., 2016;
Bueno et al., 2013; Desviat et al., 1999). In this context, the term
“Mediterranean variant” for ¢.1066-11 G>A has been suggested
to be expanded to “Southern Eurasian variant” (Kostandyan
et al., 2011). Accordingly, this variant could have had a Turkish
origin and subsequent spread throughout the Mediterranean
countries (Scriver & Kaufman, 2001). Haplotypic data (Figure
2) are in accordance with previous studies (Rivera et al., 1997,
2011; Vieira Neto et al., 2018; Zschocke, 2003; Zschocke &
Hoffmann, 1999) that claim a single origin for this allele.

The third most common variant found in this study is the
c.194T>C (p.1le65Thr) variant. It is also quite common in
Spain and Ireland (Zschocke, 2003). It has been suggested
that this variant originated during the Paleolithic in Western
Europe (Zschocke, 2003) and haplotypic data are indicative
of a single origin although conclusive interpretations are dif-
ficult given the low number of homozygous individuals ana-
lyzed in this study (N = 3).

Apart from c.782G>A (p.Arg261GIn) and c.1066-
11G>A variants, other variants were found with also a con-
siderably high frequency in our study population: c.473G>A
(p.Argl58GIn), ¢.527G>T (p.Argl76Leu), c.745C>T
(p.Leu249Phe), c¢.754C>T (p.Arg252Trp), c¢.842C>T
(p-Pro281Leu); ¢.526C>T (p.Argl76%*), c.1042C>G (p.Leu-
348Val), c.1208C>T (p.Ala403Val), ¢.385G>T (p.Asp-
129Tyr) and ¢.809G>A (p.Arg270Lys) (5.38-2.24%). Also
noteworthy is the finding that only one individual (Table
1) in our population carries the ¢.1222C>T (p.Arg408Trp)
variant in heterozygosity, the most prevalent PKU causing
variant reported to date in the world (Zschocke, 2003). This
variant is the major PKU causing variant in northern Europe
(Giannattasio et al., 1997; Lillevili et al., 1996, 2019), aris-
ing from at least two independent events in Eastern Europe
and the British Isles (Aulehla-Scholz & Heilbronner, 2003;
Dworniczak, Aulehla-Scholz, et al., 1991, 1991).

Another interesting fact is that all variants identified in our
population have already been described in other populations
apart from ¢.809G>A (p.Arg270Lys), which frequency in our
study is 2.24%. As reported by Rivera et al. (2011), this variant
has only been identified in patients with Portuguese ancestry
(Vieira Neto et al., 2018), which indicates a local origin.

Herein, we report the mutational spectrum of PAH de-
ficiency in a cohort of 223 patients in the Portuguese pop-
ulation studied over 40 years (1980-2018). We observed a
high level of genetic heterogeneity with 56 different variants
distributed to 129 different genotypes, most of them falling
into the category of missense type (76.8%). These results
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are in accordance with previous reports from other south
European and Mediterranean studies, but are clearly differ-
ent from those results found in North and Central European
countries where the prevalent variants are c.1315+1G>C
(IVS124+1G>C) and c.1222C>T (p.Argd08Trp) (Guldeberg
et al., 1998; Guldberg, Henriksen, et al., 1993; Gundorova
et al., 2019; Jaruzelska et al., 1993). In this study, the four
most prevalent variants are c¢.782G>A (p.Arg261Gln),
c.1066-11G>A, c.1162G>A (p.Val388Met) and ¢.194T>C
(p.1le65Thr), representing 44.17% of the total alleles. These
frequencies are in concordance with previous studies involv-
ing the Portuguese population (Acosta et al., 2001; Osdrio
et al., 1992;; Vieira Neto et al., 2018; Vilarinho et al., 2011,
2006, 2018).

The results obtained from molecular analyses can be
indicative of the degree of protein dysfunction, residual
PAH activity and consequently the metabolic phenotype.
The classification of PAH genotypes allows the predic-
tion of the biochemical and metabolic phenotypes in many
genotypes and can be useful for the management of HPA
in newborns (Gamez et al., 2000; Kayaalp et al., 1997;
Waters, 2003). PKU always causes HPA, but not all HPA
are PKU. Children with “atypical” or “malignant” PKU
due to a deficiency in the cofactor for PAH; BH4; do not
respond to dietary phenylalanine restriction (Blau, 2008,
2016; Blau et al., 2001; Smith et al., 1975). Differential di-
agnosis of HPA is critical to distinguish infants with PAH
deficiency from those with HPA and those who have BH4
deficiency.

Our data on the levels of phenylalanine at the newborn
screening in homozygous individuals may provide some use-
ful information in relation to the establishment of the dietary
limits for phenylalanine intake. For instance, in relation to
the c.1066-11G>A, a wide range of phenylalanine levels is
shown by homozygous individuals (see Figure 1), however,
less disperse values were detected for c.473G>A (p.Arg-
158GIn) homozygous individuals, although both variants are
associated with low residual enzymatic activity (5% and 10%,
respectively, Table 1).

Nowadays, PKU diagnosis also relies on in vitro expres-
sion analysis of recombinant mutant proteins. Several stud-
ies revealed that in general severe loss of function variants
(such as splicing, nonsense or severe missense variants),
which display in vitro null/reduced residual activity, are as-
sociated with the most severe forms of the disease (Santos
et al., 2006, 2010) (Table 1). Early diagnosis and prompt
intervention have undoubtedly allowed most individuals
with PKU to avoid severe mental disability. Dietary restric-
tion of phenylalanine remains the mainstay of treatment but
PKU is an active area of research and new treatment options
are emerging that might reduce the burden of the difficult
and restrictive diet on patients and their families (Enacan
etal., 2019; Giovannini et al., 2012; Harding & Blau, 2010;

Sumaily & Mujamammi, 2017; Walter et al., 2002). On
the contrary, patients with gene variants that determine a
high residual enzyme activity (those with the mildest met-
abolic phenotypes) have a higher probability of responding
to BH4 (Bueno et al., 2013; Michals-Matalon et al., 2007,
Rivera et al., 2011; Staudigl et al., 2011; Vieira Neto et al.,
2019). In this regard, patients with a genotype known to
be non-BH4-responsive should not undergo BH4 testing,
while patients with a genotype with BH4-responsive vari-
ations may directly proceed to a treatment trial rather than
a BH4 loading test. In all other patients, a BH4 loading
should be considered.

5 | CONCLUSION

PKU occupies a unique place in the history of metabolic dis-
eases, as not only the most commonly known inborn error of
amino acid metabolism to be identified, but also the first ge-
netic inborn metabolic disease to be screened in the neonatal
screening program. PKU is also the first serious genetic con-
dition to be treated effectively, allowing affected individuals
to lead a fulfilling life (Camp et al., 2014).

Due to the current newborn screening program, treat-
ment can be started shortly after birth and the patients fall
within the broad normal range of general ability, attaining
expected educational standards and have independent lives
as adults. Differential diagnosis of HPA is critical to dis-
tinguish infants with PAH deficiency from those very rare
patients with HPA due to BH4 deficiency. Once the ini-
tial screening detects HPA in a proband and the diagnos-
tic tests demonstrate PAH or BH4 deficiencies, molecular
genetics methods are used to confirm these results (Giittler
& Guldberg, 2000). Genetics studies in HPA patients are
of utmost importance since not only they can contribute to
the therapeutic response prediction, but also for adequate
genetic counseling.
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