230 research outputs found

    Multiple myeloma/hypercalcemia

    Get PDF
    Multiple myeloma, a cancer of plasma cells, is associated with excessive tumor-induced, osteoclast-mediated bone destruction. Hypercalcemia remains the most frequent metabolic complication of myeloma in patients, and excessive osteolysis plays a major contributory role in its pathogenesis. The clinical presentation of hypercalcemia in patients varies depending on the level of ionized calcium; it can be life threatening, as in the case of hypercalcemic crisis, requiring immediate medical treatment to prevent death. During the past few years there have been exciting developments in our understanding of the pathogenesis of myeloma bone disease; in particular, key mediators of the osteoclastic bone resorption in myeloma have been identified, including receptor activator of nuclear factor-κB ligand (RANKL) and macrophage inflammatory protein-1α. There is also increasing evidence that Dickkopf 1, which has been shown to be over-expressed in myeloma patients, is also a potent stimulator of osteoclast formation and activity. Importantly, the available data suggest that RANKL is the final common mediator of osteoclastic bone resorption, irrespective of the upstream initiator molecule. This brief review presents an overview of the roles played by these mediators in inducing osteolysis in myeloma bone disease, and it discusses targeting RANKL as a potential new treatment strategy in myeloma bone disease and myeloma-associated hypercalcemia

    Reovirus-induced cell-mediated immunity for the treatment of multiple myeloma within the resistant bone marrow niche

    Get PDF
    Background Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. Methods This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. Results Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. Conclusion These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority

    Prevalence of bisphosphonate associated osteonecrosis of the jaws in multiple myeloma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphosphonate-associated osteonecrosis of the jaws (BP-ONJ) is an adverse effect of bisphosphonate treatment with varying reported incidence rates.</p> <p>Methods</p> <p>In two neighboring German cities, prevalence and additional factors of the development of BP-ONJ in multiple myeloma patients with bisphosphonates therapy were recorded using a retrospective (RS) and cross-sectional study (CSS) design. For the RS, all patients treated from Jan. 2000 - Feb. 2006 were contacted by letter. In the CSS, all patients treated from Oct. 2006 - Mar. 2008 had a physical and dental examination. Additionally, a literature review was conducted to evaluate all articles reporting on BP-ONJ prevalence. PubMed search terms were: bisphosphonat, diphosphonate, osteonecrosis, prevalence and incidence.</p> <p>Results</p> <p>In the RS, data from 81 of 161 patients could be obtained; four patients (4.9%) developed BP-ONJ. In the CSS, 16 of 78 patients (20.5%) developed BP-ONJ. All patients with BP-ONJ had received zoledronate; 12 of these had had additional bisphosphonates. All except one had an additional trigger factor (tooth extraction [n = 14], dental surgical procedure [n = 2], sharp mylohyoid ridge [n = 3]).</p> <p>Conclusion</p> <p>The prevalence of BP-ONJ may have been underestimated to date. The oral examination of all patients in this CSS might explain the higher prevalence, since even early asymptomatic stages of BP-ONJ and previously unnoticed symptomatic BP-ONJ were recorded. Since nearly all patients with BP-ONJ had an additional trigger factor, oral hygiene and dental care might help to reduce BP-ONJ incidence.</p

    Transcriptional Regulation of BMP2 Expression by the PTH-CREB Signaling Pathway in Osteoblasts

    Get PDF
    Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts

    Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple myeloma (MM) is characterized by a strong dependence of the tumor cells on their microenvironment, which produces growth factors supporting survival and proliferation of myeloma cells (MMC). In the past few years, many myeloma growth factors (MGF) have been described in the literature. However, their relative importance and the nature of the cells producing MGF remain unidentified for many of them.</p> <p>Methods</p> <p>We have analysed the expression of 51 MGF and 36 MGF receptors (MGFR) using Affymetrix microarrays throughout normal plasma cell differentiation, in MMC and in cells from the bone marrow (BM) microenvironment (CD14, CD3, polymorphonuclear neutrophils, stromal cells and osteoclasts).</p> <p>Results</p> <p>4/51 MGF and 9/36 MGF-receptors genes were significantly overexpressed in plasmablasts (PPC) and BM plasma cell (BMPC) compared to B cells whereas 11 MGF and 11 MGFR genes were overexpressed in BMPC compared to PPC. 3 MGF genes (AREG, NRG3, Wnt5A) and none of the receptors were significantly overexpressed in MMC versus BMPC. Furthermore, 3/51 MGF genes were overexpressed in MMC compared to the the BM microenvironment whereas 22/51 MGF genes were overexpressed in one environment subpopulation compared to MMC.</p> <p>Conclusions</p> <p>Two major messages arise from this analysis 1) The majority of MGF genes is expressed by the bone marrow environment. 2) Several MGF and their receptors are overexpressed throughout normal plasma cell differentiation. This study provides an extensive and comparative analysis of MGF expression in plasma cell differentiation and in MM and gives new insights in the understanding of intercellular communication signals in MM.</p

    SAMSN1 is a tumor suppressor gene in multiple myeloma

    Get PDF
    Multiple myeloma (MM), a hematological malignancy characterized by the clonal growth of malignant plasma cells (PCs) in the bone marrow, is preceded by the benign asymptomatic condition, monoclonal gammopathy of undetermined significance (MGUS). Several genetic abnormalities have been identified as critical for the development of MM; however, a number of these abnormalities are also found in patients with MGUS, indicating that there are other, as yet unidentified, factors that contribute to the onset ofMMdisease. In this study, we identify a Samsn1 gene deletion in the 5TGM1/C57BL/KaLwRij murine model of myeloma. In addition, SAMSN1 expression is reduced in the malignant CD138+ PCs of patients with MM and this reduced expression correlates to total PC burden. We identify promoter methylation as a potential mechanismthrough which SAMSN1 expression is modulated in human myeloma cell lines.Notably, re-expression of Samsn1 in the 5TGM1murinePCline resulted in complete inhibition ofMMdisease development in vivo and decreased proliferation in stromal cell–PC co-cultures in vitro. This is the first study to identify deletion of a key gene in the C57BL/KaLwRij mice that also displays reduced gene expression in patients withMMand is therefore likely to play an integral role in MM disease development.Jacqueline E. Noll, Duncan R. Hewett, Sharon A. Williams, Kate Vandyke, Chung Kok, Luen B. To, and Andrew C.W. Zannettin

    A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells

    Get PDF
    Previous studies have established constitutive activation of Stat3 protein as one of the molecular changes required for tumorigenesis. To develop novel therapeutics for tumors harboring constitutively active Stat3, compounds from the NCI 2000 diversity set were evaluated for inhibition of Stat3 DNA-binding activity in vitro. Of these, a novel platinum (IV) compound, IS3 295, interacted with Stat3 and inhibited its binding to specific DNA-response elements. Further analysis suggested noncompetitive-type kinetics for the inhibition of Stat3 binding to DNA. In human and mouse tumor cell lines with constitutively active Stat3, IS3 295 selectively attenuated Stat3 signaling, thereby inducing cell growth arrest at G(0)/G(1) phase and apoptosis. Moreover, in transformed cells, IS3 295 repressed expression of cyclin D1 and bcl-x(L), two of the known Stat3-regulated genes that are overexpressed in malignant cells, suggesting that IS3 295 mediates anti-tumor cell activity in part by blocking Stat3-mediated subversion of cell growth and apoptotic signals. Together, our findings provide evidence for the inhibition of Stat3 activity and biological functions by IS3 295 through interaction with Stat3 protein. This study represents a significant advance in small molecule-based approaches to target Stat3 and suggests potential new applications for platinum (IV) complexes as modulators of the Stat3 pathway for cancer therapy
    corecore