26 research outputs found
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Developmental history and stress responsiveness are related to response inhibition, but not judgement bias, in a cohort of European starlings (Sturnus vulgaris)
Judgement bias tasks are designed to provide markers of affective states. A recent study of European starlings (Sturnus vulgaris) demonstrated modest familial effects on judgement bias performance, and found that adverse early experience and developmental telomere attrition (an integrative marker of biological age) both affected judgement bias. Other research has shown that corticosterone levels affect judgement bias. Here, we investigated judgement bias using a modified Go/No Go task in a new cohort of starlings (n = 31) hand-reared under different early-life conditions. We also measured baseline corticosterone and the corticosterone response to acute stress in the same individuals. We found evidence for familial effects on judgement bias, of a similar magnitude to the previous study. We found no evidence that developmental treatments or developmental telomere attrition were related to judgement bias per se. We did, however, find that birds that experienced the most benign developmental conditions, and birds with the greatest developmental telomere attrition, were significantly faster to probe the learned unrewarded stimulus. We also found that the birds whose corticosterone levels were faster to return towards baseline after an acute stressor were slower to probe the learned unrewarded stimulus. Our results illustrate the potential complexities of relationships between early-life experience, stress and affectively mediated decision making. For judgement bias tasks, they demonstrate the importance of clearly distinguishing factors that affect patterns of responding to the learned stimuli (i.e. response inhibition in the case of the Go/No Go design) from factors that influence judgements under ambiguity
Internationalization of traditional Chinese medicine: current international market, internationalization challenges and prospective suggestions
Abstract Through reviewing the current international market for traditional Chinese medicine (TCM), this paper identified the internationalization challenges for TCM, including unclear therapeutic material basis and mechanism, difficulty of quality control, low preparation level, registration/policy barriers, and shortage of intellectual property. To deal with these challenges, suggestions were given including: (1) product innovation of TCM (study the TCM by using the methods and means of western medicine; innovate the basic theory of TCM; develop TCM health product); (2) standard innovation of TCM; (3) building big data platform of Chinese medicine (big data platform of TCM preparation; big data platform on the quality of TCM)
Pulsed electromagnetic fields reduce acute inflammation in the injured rat‐tail intervertebral disc
Pro-inflammatory cytokines are recognized contributors to intervertebral disc (IVD) degeneration and discogenic pain. We have recently reported the anti-inflammatory effect of pulsed electromagnetic fields (PEMF) on IVD cells in vitro. Whether these potentially therapeutic effects are sufficiently potent to influence disc health in vivo has not been demonstrated. We report here the effect of PEMF on acute inflammation arising from a rat-tail IVD injury model. Disc degeneration was induced by percutaneously stabbing the Co6-7, Co7-8, and Co8-9 levels using a 20-gauge needle. Seventy-two (72) rats were divided into three groups: sham control, needle stab, needle stab+PEMF. Treated rats were exposed to PEMF immediately following surgery and for either 4 or 7 days (4 hr/d). Stab and PEMF effects were evaluated by measuring inflammatory cytokine gene expression (RT-PCR) and protein levels (ELISA assay), anabolic and catabolic gene expression (RT-PCR), and histologic changes. We observed in untreated animals that at day 7 after injury, inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor α, and IL-1β) were significantly increased at both gene and protein levels (P < .05). Similarly, catabolic factors (MMP [metalloproteinases]-2, MMP-13 and the transcriptional factor NF-kβ gene expression) were significantly increased (P < .05). At day 7, PEMF treatment significantly inhibited inflammatory cytokine gene and protein expression induced by needle stab injury (P < .05). At day 4, PEMF downregulated FGF-1 and upregulated MMP-2 compared to the stab-only group. These data demonstrate that previously reported anti-inflammatory effects of PEMF on disc cells carry over to the in vivo situation, suggesting potential therapeutic benefits. Though we observed an inhibitory effect of PEMF on acute inflammatory cytokine expression, a consistent effect was not observed for acute changes in disc histology and anabolic and catabolic factor expression. Therefore, these findings should be further investigated in studies of longer duration following needle-stab injury
Recommended from our members
Pulsed electromagnetic fields reduce acute inflammation in the injured rat-tail intervertebral disc.
Pro-inflammatory cytokines are recognized contributors to intervertebral disc (IVD) degeneration and discogenic pain. We have recently reported the anti-inflammatory effect of pulsed electromagnetic fields (PEMF) on IVD cells in vitro. Whether these potentially therapeutic effects are sufficiently potent to influence disc health in vivo has not been demonstrated. We report here the effect of PEMF on acute inflammation arising from a rat-tail IVD injury model. Disc degeneration was induced by percutaneously stabbing the Co6-7, Co7-8, and Co8-9 levels using a 20-gauge needle. Seventy-two (72) rats were divided into three groups: sham control, needle stab, needle stab+PEMF. Treated rats were exposed to PEMF immediately following surgery and for either 4 or 7 days (4 hr/d). Stab and PEMF effects were evaluated by measuring inflammatory cytokine gene expression (RT-PCR) and protein levels (ELISA assay), anabolic and catabolic gene expression (RT-PCR), and histologic changes. We observed in untreated animals that at day 7 after injury, inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor α, and IL-1β) were significantly increased at both gene and protein levels (P < .05). Similarly, catabolic factors (MMP [metalloproteinases]-2, MMP-13 and the transcriptional factor NF-kβ gene expression) were significantly increased (P < .05). At day 7, PEMF treatment significantly inhibited inflammatory cytokine gene and protein expression induced by needle stab injury (P < .05). At day 4, PEMF downregulated FGF-1 and upregulated MMP-2 compared to the stab-only group. These data demonstrate that previously reported anti-inflammatory effects of PEMF on disc cells carry over to the in vivo situation, suggesting potential therapeutic benefits. Though we observed an inhibitory effect of PEMF on acute inflammatory cytokine expression, a consistent effect was not observed for acute changes in disc histology and anabolic and catabolic factor expression. Therefore, these findings should be further investigated in studies of longer duration following needle-stab injury
Microfluidic Platform for Assessment of Therapeutic Proteins Using Molecular Charge Modulation Enhanced Electrokinetic Concentration Assays
Therapeutic proteins
(TPs) are critical in modern medicine, yet
shortage of TPs in disaster situations and remote areas remains a
worldwide challenge. Manufacturing and real-time release of TPs on
demand at the point-of-care is considered the key to this issue, which
requires reliable and rapid analytics techniques for quality assurance.
Herein we report a microfluidic platform that could be implemented
in-line and at the point-of-care for real-time decision-making about
the quality of a TP. The <i>in vivo</i> efficacy and duration
of efficacy of TPs were assessed by the equilibrium and kinetics of
TP and TP receptor (TPR) binding, using electrokinetic concentration
(EC) and molecular charge modulation (MCM). EC can simultaneously
concentrate and separate bound and unbound species in an assay based
on electrical mobility, allowing for the quantification of binding.
MCM enables the application of EC to arbitrary TPs by enhancing the
mobility differences between TPs, TPRs, and TP-TPR complexes. This
technology is homogeneous and overcomes many practical challenges
of conventional heterogeneous assays. We developed various formats
of assays for equilibrium and kinetic analysis and rapid determination
of degradation of TPs, obtaining results comparable to state-of-the-art
technologies with significantly less time (<1 h) and simpler setup.
Finally, we demonstrated that the results of MCM-EC based assays correlated
well with those from mass spectrometry and cell-based assay, which
are the industrial standards for quality testing of TPs
Id-1 promotes proliferation of p53-deficient esophageal cancer cells
The helix-loop-helix protein inhibitor of differentiation and DNA binding (Id-1) is known to promote cellular proliferation in several types of human cancer. Although it has been reported that Id-1 is over-expressed in esophageal squamous cell carcinoma (ESCC), its function and signaling pathways in esophageal cancer are unknown. In our study, we investigated the direct effects of Id-1 on esophageal cancer cell growth by transfecting an Id-1 expression vector into an ESCC cell line (HKESC-3), which showed serum-dependent Id-1 expression. Ectopic Id-1 expression resulted in increased serum-independent cell growth and G1-S phase transition, as well as up-regulation of mouse double minute 2 (MDM2) and down-regulation of p21Waf1/Cip1 protein expressions in the transfectant clones in a p53-independent manner. However, overexpression of Id-1 had no effect on the pRB, CDK4 and p16INK4A expressions. Stable transfection of Id-1 antisense expression vector to inhibit the expression of endogenous Id-1 in another ESCC cell line (HKESC-1) reversed the effects on MDM2 and p21Waf1/Cip1. In addition, Id-1 expression protected ESCC cells from Tumor Necrosis Factor (TNF)-α-induced apoptosis by up-regulating and activating Bcl-2. In conclusion, our study provides evidence for the first time that Id-1 plays a role in both proliferation and survival of esophageal cancer cells. Our findings also suggest that unlike prostate, hepatocellular and nasopharyngeal carcinomas in which Id-1 induces cell proliferation through inactivation of p16INK4A/RB pathway, the increased cell proliferation observed in ESCC cells may be mediated through a different mechanism. © 2006 Wiley-Liss, Inc.link_to_subscribed_fulltex
Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-like gamma-Al2O3
Morphological and surface characteristics of gamma-Al2O3 are topics of high relevance in the field of catalysis. Using tomography and high-resolution transmission electron microscopy (TEM) imaging, we have studied the surface characteristics of a model gamma-Al2O3 synthesized in the shape of platelets and macroscopically defined by (110)Al2O3 and (111)Al2O3, surface facets. We show that the dominant (110)Al2O3, surface of the synthesized gamma-Al2O3 is not atomically flat but undergoes a significant reconstruction, forming nanoscale (111)Al2O3, facets. In addition to high-resolution imaging, tomographic analysis was carried out, enabling an examination of the pores/voids, which were found to be mostly enclosed within the bulk and inaccessible to gases or solvents carrying precursors for metal particles. Tomographic analysis shows that the surfaces of the pores are defined exclusively by (100)Al2O3 and (111)Al2O3 facets. The importance of these findings is discussed in the context of relative surface energies of low index surfaces and ethanol desorption characteristics.close10