31 research outputs found

    A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons.

    Get PDF
    BACKGROUND: The delta opioid receptor (DOR) is broadly expressed throughout the nervous system; it regulates chronic pain, emotional responses, motivation, and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. We used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. METHODS: We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1(fl/fl) (Dlx-DOR) mice and tested main central DOR functions through behavioral testing. RESULTS: The DOR proteins were strongly deleted in olfactory bulb and striatum and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity, and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. The Dlx-DOR mice showed lower levels of anxiety in the elevated plus maze, opposing the known high anxiety in constitutive DOR knockout animals. Also, Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos protein staining after novelty suppressed feeding was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. CONCLUSIONS: We demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. In emotional responses, DORs exert dual anxiolytic and anxiogenic roles, both of which may have implications in the area of anxiety disorders

    Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit

    Get PDF
    Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM mice reported no change in the locomotor activity, cognitive ability, social interaction, and depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc and the high K+ (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal system in the NAc might become a novel target while studying the etiology of anxiety and sensorimotor gating deficits

    Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats

    Get PDF
    Epidemiological studies have demonstrated a comorbidity of smoking with depression and anxiety, particularly during adolescence. However, few animal studies have considered possible synergistic interactions between nicotine and other tobacco smoke constituents, such as monoamine oxidase (MAO) inhibitors, in the regulation of mood. The aim of the study was to test the hypothesis that nicotine combined with the irreversible MAO inhibitor, tranylcypromine, will differentially affect depression- and anxiety-related behaviors in adolescent and adult rats. Nicotine (0, 0.05, 0.2 mg/kg, s.c.) and tranylcypromine (3 mg/kg, i.p.) were tested separately, or together, on male rats aged postnatal days 30 and 68, in three mood-related behavioral tests: forced swim test (FST), elevated plus maze (EPM), and open field. Nicotine (0.2 mg/kg) in adults significantly decreased floating time in the FST and increased time spent in the open arm of the EPM, with no change in locomotor activity. Tranylcypromine pretreatment combined with nicotine (0.2 mg/kg) significantly increased locomotor activity and time spent in the center of the open field. Whereas nicotine alone had no significant effect on adolescents, it significantly increased locomotor activity and decreased floating time in the FST when combined with tranylcypromine pretreatment. There is an age-dependent effect of nicotine, alone and in combination with MAO inhibition, on mood-related behaviors. Whereas nicotine alone induces mood improvement in adults, it has no effect on adolescents. Nicotine combined with tranylcypromine has unique, age-dependent effects. Thus, experimental studies of smoking should consider both age and other tobacco constituents, such as MAO inhibitors, as critical factors

    LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT2A receptor

    Get PDF
    Compounds that activate the 5-HT2A receptor, such as lysergic acid diethylamide (LSD), act as hallucinogens in humans. One notable exception is the LSD congener lisuride, which does not have hallucinogenic effects in humans even though it is a potent 5-HT2A agonist. LSD and other hallucinogens have been shown to disrupt prepulse inhibition (PPI), an operational measure of sensorimotor gating, by activating 5-HT2A receptors in rats. We tested whether lisuride disrupts PPI in male Sprague–Dawley rats. Experiments were also conducted to identify the mechanism(s) responsible for the effect of lisuride on PPI and to compare the effects of lisuride to those of LSD. Confirming a previous report, LSD (0.05, 0.1, and 0.2 mg/kg, s.c.) reduced PPI, and the effect of LSD was blocked by pretreatment with the selective 5-HT2A antagonist MDL 11,939. Administration of lisuride (0.0375, 0.075, and 0.15 mg/kg, s.c.) also reduced PPI. However, the PPI disruption induced by lisuride (0.075 mg/kg) was not blocked by pretreatment with MDL 11,939 or the selective 5-HT1A antagonist WAY-100635 but was prevented by pretreatment with the selective dopamine D2/D3 receptor antagonist raclopride (0.1 mg/kg, s.c). The effect of LSD on PPI is mediated by the 5-HT2A receptor, whereas activation of the 5-HT2A receptor does not appear to contribute to the effect of lisuride on PPI. These findings demonstrate that lisuride and LSD disrupt PPI via distinct receptor mechanisms and provide additional support for the classification of lisuride as a non-hallucinogenic 5-HT2A agonist

    Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning

    Get PDF
    Background: Autonomous reflexes enable animals to respond quickly to potential threats, prevent injury and mediate fight or flight responses. Intense acoustic stimuli with sudden onsets elicit a startle reflex while stimuli of similar intensity but with longer rise times only cause a cardiac defence response. In laboratory settings, habituation appears to affect all of these reflexes so that the response amplitude generally decreases with repeated exposure to the stimulus. The startle reflex has become a model system for the study of the neural basis of simple learning processes and emotional processing and is often used as a diagnostic tool in medical applications. However, previous studies did not allow animals to avoid the stimulus and the evolutionary function and long-term behavioural consequences of repeated startling remain speculative. In this study we investigate the follow-up behaviour associated with the startle reflex in wild-captured animals using an experimental setup that allows individuals to exhibit avoidance behaviour. Results: We present evidence that repeated elicitation of the acoustic startle reflex leads to rapid and pronounced sensitisation of sustained spatial avoidance behaviour in grey seals (Halichoerus grypus). Animals developed rapid flight responses, left the exposure pool and showed clear signs of fear conditioning. Once sensitised, seals even avoided a known food source that was close to the sound source. In contrast, animals exposed to non-startling (long rise time) stimuli of the same maximum sound pressure habituated and flight responses waned or were absent from the beginning. The startle threshold of grey seals expressed in units of sensation levels was comparable to thresholds reported for other mammals (93 dB). Conclusions: Our results demonstrate that the acoustic startle reflex plays a crucial role in mediating flight responses and strongly influences the motivational state of an animal beyond a short-term muscular response by mediating long-term avoidance. The reflex is therefore not only a measure of emotional state but also influences emotional processing. The biological function of the startle reflex is most likely associated with mediating rapid flight responses. The data indicate that repeated startling by anthropogenic noise sources might have severe effects on long-term behaviour. Future, studies are needed to investigate whether such effects can be associated with reduced individual fitness or even longevity of individuals.Publisher PDFPeer reviewe

    SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Slc26a4 Mutant Mice

    Get PDF
    Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4[superscript Δ/Δ] mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4[superscript Δ/Δ] line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4

    Influence of aripiprazole, risperidone, and amisulpride on sensory and sensorimotor gating in healthy 'low and high gating' humans and relation to psychometry

    Full text link
    Despite advances in the treatment of schizophrenia spectrum disorders with atypical antipsychotics (AAPs), there is still need for compounds with improved efficacy/side-effect ratios. Evidence from challenge studies suggests that the assessment of gating functions in humans and rodents with naturally low-gating levels might be a useful model to screen for novel compounds with antipsychotic properties. To further evaluate and extend this translational approach, three AAPs were examined. Compounds without antipsychotic properties served as negative control treatments. In a placebo-controlled, within-subject design, healthy males received either single doses of aripiprazole and risperidone (n=28), amisulpride and lorazepam (n=30), or modafinil and valproate (n=30), and placebo. Prepulse inhibiton (PPI) and P50 suppression were assessed. Clinically associated symptoms were evaluated using the SCL-90-R. Aripiprazole, risperidone, and amisulpride increased P50 suppression in low P50 gaters. Lorazepam, modafinil, and valproate did not influence P50 suppression in low gaters. Furthermore, low P50 gaters scored significantly higher on the SCL-90-R than high P50 gaters. Aripiprazole increased PPI in low PPI gaters, whereas modafinil and lorazepam attenuated PPI in both groups. Risperidone, amisulpride, and valproate did not influence PPI. P50 suppression in low gaters appears to be an antipsychotic-sensitive neurophysiologic marker. This conclusion is supported by the association of low P50 suppression and higher clinically associated scores. Furthermore, PPI might be sensitive for atypical mechanisms of antipsychotic medication. The translational model investigating differential effects of AAPs on gating in healthy subjects with naturally low gating can be beneficial for phase II/III development plans by providing additional information for critical decision making
    corecore