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ABSTRACT 19 

Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some 20 

putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) 21 

dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH 22 

dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the 23 

present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral 24 

paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of 25 

C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased 26 

approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM 27 

mice reported no change in the locomotor activity, cognitive ability, social interaction, and 28 

depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the 29 

elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with 30 

the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased 31 

prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was 32 

reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, 33 

accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc 34 

and the high K⁺  (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the 35 

NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal 36 

system in the NAc might become a novel target while studying the etiology of anxiety and 37 
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sensorimotor gating deficits. 38 
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INTRODUCTION 39 

Accumulating evidence indicates a link between the mood disorders and drug addiction within the 40 

brain’s rewarding circuitry [1, 2]. Mice chronically administered with methamphetamine (METH), 41 

are generally used as a model to learn about the psychiatric disorders. The model is described by 42 

related behavioral alterations, which suggests long-lasting influences on the gene and protein 43 

expression within specific brain subregions, including the nucleus accumbens (NAc), striatum, 44 

prefrontal cortex, and hippocampus [3-5]. Recently, several studies have attempted to elucidate the 45 

link between the METH-induced maladaptive molecular changes in the brain and behavioral 46 

alterations [4, 6, 7]. These studies may be crucial in discovering the mechanisms involved in the 47 

regulation of psychiatric phenomena and may also suggest novel targets for pharmacotherapy. 48 

Considering using animal models of addiction to study mood disorders, we focused on the NAc, 49 

which plays an important role in both reward circuitry and mood regulation [1, 2]. Several 50 

psychostimulant adaptive molecules in the NAc are known to be involved in psychiatric disorders, 51 

including the cAMP response element-binding protein (CREB) [8, 9], brain-derived neurotrophic 52 

factor (BDNF) [10, 11], orexin [12], and Shati/Nat8l [5, 13]; however, key signaling pathways and 53 

novel molecular cascades related to behavioral regulation still remain to be identified. In a recent 54 

study, we administered METH (2 mg/kg) in mice for 6 days, and then performed a polymerase 55 

chain reaction-selected cDNA subtraction in the NAc of mice [3]. We found that a novel molecule 56 

transmembrane protein 168 (TMEM168; GenBank accession number NM_028990) was increased 57 
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in the brain, especially in the NAc and hippocampus [14]. The accumbal overexpressed TMEM168 58 

plays a crucial role in controlling the METH-induced pharmacological actions [14]; however, 59 

whether TMEM168 in the NAc is associated to the other behavioral changes in vivo still needs to 60 

be evaluated.  61 

In the present study, the adeno-associated virus (AAV) comprising tmem168 cDNA was 62 

microinjected into the NAc of mice to overexpress TMEM168 mRNA. A series of behavioral tests 63 

were performed to explore the behavioral changes following the interruption of the injections of 64 

TMEM168. Furthermore, the in vivo microdialysis analysis was conducted to elucidate the 65 

functional role of TMEM168 in the NAc. We identified TMEM168 in the NAc as a novel target to 66 

induce anxiety and schizophrenia-like symptoms, by inhibiting the GABAergic system in the NAc. 67 
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MATERIALS AND METHODS 68 

 69 

Animals  70 

Male C57BL/6J mice (8-week old; Nihon SLC, Inc. Hamamatsu, Japan) were housed in plastic cages 71 

with a 12 h light/dark cycle (8 am–8 pm). The health and welfare of the animals was 72 

monitored by staff at least once a day. All procedures were in accordance with the National 73 

Institute of Health Guideline for the Care and Use of Laboratory Animals and were approved by the 74 

Animal Experiments Committee of the University of Toyama (Permit Number A2015pha-21). 75 

 76 

Drugs  77 

Diazepam (045-18901; Wako Pure Chemical Industries, Japan) was dissolved in saline and 1% 78 

Tween80. Risperidone (R3030; Sigma-Aldrich, Japan) was dissolved in saline. The behavioral 79 

experiments were performed 30 min after the drug administration. The mice administered with 80 

diazepam or risperidone were not used for other behavioral experiments. 81 

 82 

AAV microinjection 83 

The AAV vector was produced according to previously described methods [15] by encoding cDNA 84 

tmem168 (GenBank accession number NM_028990). Mice were anesthetized with a combination 85 

anesthetic (medetomidine (0.3 mg/kg), midazolam (4.0 mg/kg), and butorphanol (5.0 mg/kg)), and 86 
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were fixed in a stereotactic frame (SR-5M, Narishige, Tokyo, Japan). AAV-TMEM168 vector or 87 

AAV-Mock vector (0.7 μl/side) was injected bilaterally into the NAc (1.5 mm anterior and 0.8 mm 88 

lateral from bregma, 3.9 mm below the skull surface [16]; NAc-TMEM mice or NAc-Mock mice at a 89 

speed of 0.05 µL/min. Mice were used for the experiments 3 weeks later. 90 

All procedures were in accordance with the Guideline for Recombinant DNA Experiment from the 91 

Ministry of Education Culture, Sports, Science, and Technology, Japan and were approved by the 92 

Gene Recombination Experiment Safety Committee of the University of Toyama (Permit Number 93 

G2015pha-21). 94 

 95 

Quantitative real time RT-PCR analysis 96 

After 3 weeks of AAV microinjection, the NAc-Mock mice and NAc-TMEM mice were decapitated 97 

by animal guillotine without feeling any suffering and the brains were quickly removed, since the 98 

fresh brain tissues were needed for the isolation of mRNA or brain slices. This procedure 99 

were done without anesthesia to avoid the effect of anesthetic drugs. All procedures 100 

followed the National Institute of Health Guideline for the Care and Use of Laboratory 101 

Animals (NIH publication No. 85–23, revised in 1996) and were approved by the 102 

committee for Animal Experiments of the University of Toyama (Permit Number 103 

A2015-PHA21). The NAc tissues were dissected according to the atlas of mouse brain [16] and 104 

were preserved at −80 °C until further use. The analysis of real time RT-PCR was described as a 105 
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previous method [14]. The total RNA (1 μg) from each tissue was extracted (RNeasy Plus Mini Kit 106 

protocol; QIAGEN, Tokyo, Japan) and was converted into cDNA using the Prime Script RT reagent 107 

kit (Takara, Shiga, Japan), following the manufacturer’s instructions. Quantitative real time RT-PCR 108 

was performed in a Thermal Cycler Dice Real Time System (Takara) using Power SYBR Green PCR 109 

Master Mix (Applied Biosystems, Foster, CA) with cDNA and primers (1 µM), according to the 110 

manufacturer’s recommendation. The primers of TMEM168 used for real time RT-PCR were as 111 

follows: 5'-GACAGAATCATGGCATCCAAAGG-3', and 112 

5'-ATGGACTCCAGCGGCAAGACAA-3'. The 36B4 transcript amount was quantified using 113 

primers 5'-ACCCTGAAGTGCTCGACATC-3', and 5'-AGGAAGGCCTTGACCTTTTC-3'. 114 

 115 

Schedule of the behavioral tests 116 

We performed the behavioral tests in the following order: locomotor activity test, Y-maze test, novel 117 

object recognition test, social interaction test, elevated plus maze test, light/dark box test, tail 118 

suspension test, forced swim test, and prepulse inhibition test. The time interval between each test 119 

was 2–3 days. 120 

 121 
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Locomotor activity test 122 

The locomotor activity test was performed, as previously reported [17]. Mice were placed into a 123 

Plexiglas box with a frosting Plexiglas floor (40 × 40 × 30 cm), and the test was performed for 60 124 

min using digital counters with infrared sensors (Scanet MV-40; MELQEST, Toyama, Japan). 125 

 126 

Y-maze test 127 

Y-maze test was performed, according to a previously described method [18]. The three-arm maze 128 

(each arm measuring 40 cm × 3 cm × 12 cm) was used for the test. Mice were placed at the end of 129 

one arm and were allowed to move freely through the maze for 10 min. During this time, the arm 130 

entries were enumerated. Alternation was defined as successive entries into the three arms on the 131 

overlapping triplet sets. The percentage alternation was calculated using the following formula: 132 

(number of alternations)/(total number of arm entries-2) × 100. 133 

 134 

Novel object recognition test 135 

Novel object recognition test was performed, according to a previously described method [18]. After 136 

habituation for 3 days, the NAc-Mock or NAc-TMEM mice were allowed to explore two familiar 137 

floor-fixed objects (A and B) in a Plexiglas box (30 cm × 30 cm × 35 cm) for 10 min (familiar 138 

process). The familiar object A and a novel object C were set in the Plexiglas box 24 h after the trail 139 

and the mice were allowed to explore the novel object process for 10 min (novel process). The 140 
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exploratory preference percentage was calculated using the following formula: (approach time of 141 

object B or C)/(total approach time of the two objects in each process) × 100. 142 

 143 

Social interaction test 144 

Social interaction test was performed according to a previously described method [19]. The 145 

apparatus for this test was designed as a Plexiglas box (60 cm × 40 cm × 22 cm) comprising three 146 

connected chambers. After habituation for 2 days, both the NAc-Mock and NAc-TMEM mice were 147 

randomly assigned to a partner male mouse, which was confined to one side of the chamber. The test 148 

mice were placed in the apparatus for 10 min and the total duration they spent interacting with the 149 

partner mouse was recorded. 150 

 151 

Elevated plus-maze test 152 

Elevated plus-maze test was performed according to a previously described method [20]. The 153 

apparatus comprised four black plastic arms (25 cm × 5 cm). Two opposite arms were enclosed by 154 

walls (15 cm in height) and the other two “open” arms had only a small rim (0.2 cm) around the 155 

edges. The apparatus was elevated to a height of 70 cm above the floor level. For testing, mice were 156 

placed in the center region facing an open arm, and were allowed to freely explore the maze for 10 157 

min. The time spent on open arms and the number of entries into the open arms was evaluated. 158 

 159 
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Light–dark box test 160 

Light–dark test was performed according to a previously described method [20]. The apparatus 161 

comprised two plastic chambers. The dark chamber (black plastic) measured 15 cm × 15 cm × 20 cm 162 

(l × w × h) and was covered by a lid. The light chamber, 15 cm × 15 cm × 20 cm (l × w × h), made of 163 

transparent plastic, was brightly illuminated from above with tubular fluorescent lamps (1000 lux). 164 

Mice were placed into the dark chamber and their behaviors were monitored by Scanet MV-40 LD 165 

(MELQUEST) for 10 min. The time spent in the light box was measured. 166 

 167 

Tail suspension test 168 

Tail suspension test was performed according to a previously described method [19]. The mice were 169 

suspended by their tails, i.e., the body dangled in the air, with the head pointing downward. The 170 

duration of immobility from 2 min to 6 min within the 10 min test was recorded visually. 171 

 172 

Forced swim test 173 

Forced swim test was performed according to a previously described method [19]. Mice were placed 174 

in a transparent Plexiglas cylinder (diameter: 14.5 cm; height: 19 cm), filled with water (depth: 15 175 

cm; temperature: 25 °C). The immobility time was monitored by Scanet MV-40 AQ (MELQUEST) 176 

from 2 min to 6 min within the 10 min test. 177 

 178 



Fu et al. 

12 
 

Prepulse inhibition test 179 

Prepulse inhibition (PPI) test was performed according to a previously described method [21]. The 180 

test was evaluated using the SR-LAB apparatus (San Diego Instruments, CA, USA). Briefly, the test 181 

was performed by exposing the animals to a 70 dB background noise. After a 5 min acclimatization 182 

period, 5 pulses (120 dB each lasting 40 ms) were presented. Subsequently, the randomly prepulse 183 

plus pulse trials were administered as a 20 ms prepulse of 74, 78, 82 or 86 dB, followed by a 100 ms 184 

delay and a startle pulse (120 dB each lasting 40 ms). Eventually, 5 pulses (120 dB each lasting 40 185 

ms) were presented once again. The PPI was calculated as (1 − [startle amplitude on prepulse + pulse 186 

trial/mean startle amplitude on pulse alone trials]) × 100. 187 

 188 

Tissue extraction 189 

From each brain, the NAc tissue was bilaterally extracted and homogenized in a homogenizing 190 

buffer, containing 200 mM perchloric acid and 100 μM ethylenediaminetetraacetic acid (EDTA). The 191 

homogenates were kept in ice for 30 min and were then centrifuged at 20,000 × g for 15 min at 0 °C. 192 

Supernatant was collected and was adjusted to pH 3.0 by adding 1 M sodium acetate. After filtration 193 

(0.45 μm Membrane Filter, MF-Millipore, Japan), the extraction samples was preserved at −80 °C 194 

until the measurement by high-performance liquid chromatography (HPLC). 195 

 196 
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In vivo microdialysis 197 

In vivo microdialysis was performed according to a previously described method [17]. The guide 198 

cannula (AG-4, Eicom, Kyoto, Japan) was implanted into the NAc (+1.5 mm anterolateral, +0.7 mm 199 

mediolateral from bregma, and +3.25 mm dorsoventral from dura mater). On the following day, a 200 

dialysis probe (A-I-4-01, Eicom) was inserted into the guide cannula, and a ringer’s solution (147 201 

mM NaCl, 4 mM KCl, and 2.3 mM CaCl2) was continuously perfused through the probe into the left 202 

side of the NAc. 203 

In the case of GABA dialysis, the dialysate was collected every 30 min at a rate of 1.0 μL/min by a 204 

fraction collector (EF-80; Eicom), placed in biotubes and preserved at −80 °C until it was subjected 205 

to HPLC. High K⁺-stimulation (100 mM) was applied for 15 min, 4.5 h after the probe insertion. The 206 

baseline of extracellular GABA levels was the mean of the averages amount of the last three samples 207 

before high K⁺-stimulation. The 100 mM K+ solution means an identical amount of sodium is 208 

replaced in the ringer’s solution with potassium. 209 

In case of dopamine and serotonin dialysis, the dialysate was collected in 15 min fractions at a rate of 210 

0.5 μL/min and was simultaneously subjected to HPLC.  211 

 212 

HPLC Detection 213 

Using sampling injector (M-500; Eicom), 7 μL of o-phthalaldehyde solution (4 mmol/L) and 0.04% 214 

mercaptoethanol in carbonate buffer (pH 9.5) were added to a 21 μL of dialysate sample or extraction 215 
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sample. Subsequently, 21 μL of the mixture was injected into the HPLC system (HTEC-50; Eicom). 216 

GABA was separated on the SA-50DS column (Eicom), which was maintained at 25 °C, using a 217 

phosphate buffer (pH 3.5) containing EDTA (0.5 μg/L) and 50% methanol as the mobile phase with a 218 

flow rate of 500 μL/min. An electrochemical detector that used a glassy carbon and a working 219 

electrode (set at +600 mV) against a silver–silver chloride reference electrode (WE-GC; Eicom) was 220 

used to quantify the compounds. Chromatograms were controlled by an integrator (PowerChrom: 221 

AD Instruments, NSW, Australia) connected to a personal computer. 222 

In the case of dopamine and serotonin detection, the dialysate was injected into the HPLC system 223 

(HTEC-50; Eicom) directly by an auto injector (Eicom). Dopamine and serotonin were separated on 224 

a PP-ODS column (Eicom), which was maintained at 25 °C, using a phosphate buffer (pH 6.0) 225 

containing decane sulfonic acid (0.5 g/L), EDTA (50 μg/L), and 1% methanol as the mobile phase at 226 

a flow rate of 500 μL/min. An electrochemical detector that used a glassy carbon working electrode 227 

(set at + 400 mV) against a silver–silver chloride reference electrode (WE-3G; Eicom) was used to 228 

quantify the compounds. Four hours after the probe was inserted, the baseline of dopamine and 229 

serotonin levels was measured as the average of the last three samples. Chromatograms were 230 

controlled by an integrator (PowerChrom: AD Instruments, NSW, Australia) connected to a personal 231 

computer. 232 

 233 
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Statistical Analyses 234 

All data were expressed as the mean ± standard error of mean (S.E.M.). Statistical differences 235 

between the two groups were determined using a Student’s t-test. Statistical differences among 236 

values for individual groups were determined by one-way analysis of variance (ANOVA), followed 237 

by the Bonferroni’s post hoc tests when F ratios were significant (p < 0.05). The influences of drug 238 

administration on individual groups were determined by two-way ANOVA, followed by the 239 

Bonferroni’s post hoc tests when F ratios were significant (p < 0.05). To analyze the GABA 240 

development in the microdialysis experiment, statistical differences were evaluated by ANOVA with 241 

repeated measurement, followed by Bonferroni’s post hoc tests (Prism version 5). 242 
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RESULTS 243 

 244 

Microinjection of AAV-TMEM168 vector increased the TMEM168 245 

mRNA expression in the NAc 246 

The mRNA expression level was measured by using real time RT-PCR experiment and was presented 247 

as the value relative to 36B4 mRNA level. The average of the TMEM168 mRNA levels in the 248 

NAc-TMEM mice was 0.214 ± 0.05 and the average of TMEM168 mRNA levels in the NAc-Mock 249 

mice (controls) was 0.0282 ± 0.003. TMEM168 mRNA levels in the NAc of the NAc-TMEM mice 250 

were increased significantly when compared with the levels in the NAc-Mock mice (N = 6, p < 0.01, t 251 

= 3.979; Student-t test). 252 

 253 

Overexpression of TMEM168 did not change the locomotion, 254 

spontaneous alternation, cognitive ability, social interaction, and 255 

depression-like behaviors in mice  256 

A series of behavioral tests were performed to detect the changes in the emotional behavior induced by 257 

TMEM168 overexpression. The NAc-TMEM mice reported no changes in the locomotor activity test 258 

(Fig 1A, t = 1.167) or the Y-maze test (Fig 1B, t = 0.9495), novel object recognition test (Fig 1C, F(3, 259 

32) = 20.98), three chamber social interaction test (Fig 1D, F(3, 32) = 15.7), tail suspension test (Fig 1E, t 260 

= 0.2432), and forced swimming test (Fig 1F, t = 0.7084) when compared with the NAc-Mock mice.  261 
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 262 

Figure 1 Similar preferences in locomotor activity, Y-maze, novel object recognition, three 263 

chambers, tail suspension, and forced swimming tasks in the NAc-TMEM mice compared with 264 

the NAc-Mock mice (A) The locomotor activity in the NAc-Mock and NAc-TMEM mice were 265 

measured for 60 min (No significant difference; Student-t test). (B) Working memory was assessed in 266 

the Y-maze spontaneous alternation task in the NAc-Mock and NAc-TMEM mice (No significant 267 

difference; Student-t test). (C) Cognitive function was assessed in the novel object recognition task. 268 

Percentage of total exploratory time on the novel object was expressed as exploratory preference (%) 269 

(No significant difference; ANOVA followed by the Bonferroni’s post hoc tests). (D) Social interaction 270 

was assessed in the three chambers task. Average time (10 min per phase) spent in the chamber with 271 

an object or a stranger mouse was detected (No significant difference; ANOVA followed by the 272 

Bonferroni’s post hoc tests). (E) Immobility time of the NAc–-Mock and NAc-TMEM mice in the 273 

tail-suspension task was measured for 5 min (No significant difference; Student-t test). (F) Immobility 274 

time of the NAc-Mock and NAc-TMEM mice in the forced swimming task was measured for 5 min 275 

(No significant difference; Student-t test). Values are presented as mean ± S.E.M. N = 9. 276 

 277 

Overexpression of TMEM168 in the NAc induced the increased 278 

anxiety and decreased sensorimotor gating in mice 279 

TMEM168 overexpression in the NAc increased anxiety in mice, such as entries (Fig 2A, p < 0.05, t = 280 
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2.844) and time (Fig 2B, p < 0.05, t = 2.2.253) on open arms in the elevated plus-maze) as well as 281 

time in the light box in light/dark box tasks (Fig 2C, p < 0.05, t = 2.964). Although the startle 282 

responses were not affected (Fig. 2D, F(11, 96) = 58.07), decreased sensorimotor gating in the 283 

NAc-TMEM mice was observed in the prepulse intensity of 74 dB and 82 dB in the auditory PPI test 284 

(Fig. 2E, p < 0.05, F(7, 64) = 16.61). It is suggested that overexpression of TMEM168 in the NAc 285 

induced sensorimotor gating deficit in mice. 286 

 287 

Figure 2 Increased anxiety and decreased PPI in the NAc-TMEM mice compared with the 288 

NAc-Mock mice (A) Number of entries spent on open arms were measured for 10 min in the elevated 289 

plus-maze task; N = 9; Values are presented as mean ± S.E.M. *p < 0.05 vs. NAc-Mock (Student-t 290 

test). (B) Time spent on open arms was measured for 10 min in the elevated plus-maze task; N = 9; 291 

Values are presented as mean ± S.E.M. *p < 0.05 vs. NAc-Mock (Student-t test). (C) Time in the light 292 

box was measured for 10 min in the light/dark box task; N = 9; Values are presented as mean ± S.E.M. 293 

*p < 0.05 vs. NAc-Mock (Student-t test). (D) Startle responses were measured at 70, 80, 90, 100, 110, 294 

and 120 dB, respectively (background noise: 70 dB). N = 9; Values are presented as mean ± S.E.M. No 295 

significant difference between NAc-TMEM and NAc-Mock mice (ANOVA followed by the 296 

Bonferroni’s post hoc tests). (E) PPI was measured for 74, 78, 82, and 86 dB, respectively, of the 297 

prepulse intensity (background noise: 70 dB). Values are presented as mean ± S.E.M. N = 9. *p < 0.05 298 

vs NAc-Mock (ANOVA followed by the Bonferroni’s post hoc tests).  299 
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 300 

Anxiety-like behaviors induced by TMEM168 overexpression in 301 

the NAc were reversed by the administration of diazepam 302 

Diazepam is an (Food and Drug Administration in USA (FDA)-approved benzodiazepine known to 303 

alleviate anxiety, by activating the inotropic GABAA receptors [22]. To investigate whether the 304 

anxiety-like behaviors detected in the NAc-TMEM mice could be reduced by the administration of 305 

anxiolitic drugs, mice were administered with diazepam (0.3 mg/kg i.p.) or vehicle, 30 min before a 306 

performance in the elevated plus-maze and the light/dark box tasks. The dose of diazepam for mice 307 

administration was referred to the previous study [23], which would not affect anxious behaviors in 308 

mice as a criticality. In the elevated plus-maze tasks, the decreased number of open arm entries in the 309 

TMEM mice was reversed (Fig 3A, F(1, 20) = 1.169, p < 0.05) and the decreased time spent in open 310 

arms tend to be normalized in the NAc-TMEM mice (Fig 3B, F(1, 20) = 5.2), following the 311 

administration of diazepam. Similarly, in the light/dark box task, the decreased time spent in the light 312 

box in the NAc-TMEM mice was also reversed after the administration of diazepam (Fig 3C, F(1, 28) = 313 

1.628, p < 0.05). 314 

 315 

Fig 3. Reversal of anxiety behaviors in the elevated plus-maze and light/dark box task following 316 

the administration of diazepam in the NAc-TMEM mice (A) and (B) Diazepam (0.3 mg/kg i.p.) or 317 

vehicle was administered 30 min before performance in the elevated plus-maze task. Number of 318 



Fu et al. 

20 
 

entries and time on open arms were measured for 10 min in the elevated plus-maze task, N = 6; Values 319 

are presented as mean ± S.E.M. *p < 0.05 vs. NAc-TMEM (VEH) (two-way ANOVA followed by the 320 

Bonferroni’s post hoc tests). (C) Diazepam (0.3 mg/kg i.p.) or vehicle was administered 30 min before 321 

the light/dark box test. Time in the light box was measured for 10 min in the light/dark box test, N = 8; 322 

values are presented as mean ± S.E.M. *p < 0.05 vs. NAc-TMEM (VEH) (two-way ANOVA followed 323 

by the Bonferroni’s post hoc tests); VEH: vehicle administration group, DZP: diazepam administration 324 

group. 325 

 326 

Decreased PPI induced by TMEM168 overexpression in the NAc 327 

was reversed following the administration of risperidone 328 

Sensorimotor gating deficit, which is detected by auditory PPI test, is assumed to be a distinctive 329 

phenomenon of schizophrenia [24]. Previous studies reported that antipsychotic drugs, such as 330 

risperidone, significantly reverse the low levels of sensorimotor gating [25]. Mice were injected with 331 

risperidone (0.1 mg/kg i.p.) or saline, 30 min before performing the auditory PPI task. The 332 

concentration of risperidone administration was referred to the previous studies [26, 27], which would 333 

not affect locomotor activity and startle response in mice. No between-group difference was observed 334 

in the startle response to any pulse intensity between the NAc-Mock mice and NAc-TMEM mice, 335 

when these were administrated with saline or risperidone (Fig 4A, F(11, 162) = 0.6238). However, the 336 

decreased PPI in the NAc-TMEM mice was reversed following the administration of risperdone at a 337 
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prepulse of 74 dB (p < 0.01) and 78 dB (p < 0.05) (Fig 4B, F(7, 108) = 2.293). 338 

 339 

Fig 4. Reversal of sensorimotor gating deficit in the PPI task following the administration of 340 

risperidone in the NAc-TMEM mice (A) Risperidone (0.01 mg/kg i.p.) or saline was administrated 341 

30 min before the task performance. Startle responses was measured at 70, 80, 90, 100, 110, and 120 342 

dB, respectively (background noise: 70 dB), N = 8; values are presented as mean ± S.E.M. No 343 

significant difference between NAc-TMEM and NAc-Mock mice (two-way ANOVA followed by the 344 

Bonferroni’s post hoc tests). (B) Risperidone (0.01 mg/kg i.p.) or saline was administered 30 min 345 

before the task performance. PPI was measured for 74, 78, 82, and 86 dB respectively, of prepulse 346 

intensity (background noise: 70 dB), N = 8; values are presented as mean ± S.E.M. **p < 0.01, *p < 347 

0.05 vs. NAc-TMEM (VEH) (two-way ANOVA followed by the Bonferroni’s post hoc tests). VEH: 348 

saline administration group, RIS: risperidone administration group. 349 

 350 

Overexpression of TMEM168 in the NAc did not change the total 351 

contents of glutamate and GABA, but decreased the basal levels of 352 

accumbal extracellular GABA and high K⁺ -stimulated GABA 353 

release from the NAc 354 

The contents of GABA and glutamate in the NAc were analyzed by HPLC. No difference was 355 

observed between the NAc-TMEM and NAc-Mock mice (Fig 5A, F(1, 40) = 0.5878). The TMEM168 356 
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overexpression inhibited the basal extracellular GABA levels (Fig 5B, p < 0.05, t = 2.281). Moreover, 357 

GABA release following the potassium stimulation was decreased in the NAc-TMEM mice when 358 

compared to the NAc-Mock animals (Fig 5C, p < 0.01, F(6, 60) = 7.683). These results suggest that 359 

TMEM168 baseline overexpression attenuated GABA neurotransmission in the NAc. 360 

 361 

Fig 5. Inhibitory effects of TMEM168 on GABA neurotransmission in the NAc (A) Glutamate 362 

(GLU) and GABA concentrations in the NAc tissue were measured by HPLC. The NAc-Mock mice 363 

and NAc-TMEM mice were sacrificed and then the NAc tissue was extracted immediately, N = 11; 364 

values are presented as mean ± S.E.M. No significant difference between NAc-TMEM and 365 

NAc-Mock mice (two-way ANOVA followed by the Bonferroni’s post hoc tests). (B) Basal levels of 366 

extracellular GABA in the NAc were detected by the in vivo microdialysis task, N = 6; values are 367 

presented as mean ± S.E.M. *p < 0.05 vs. NAc-Mock (Student-t test). (C) Dynamic changes in the 368 

extracellular GABA levels in the NAc after high K⁺-stimulation was analyzed in the NAc by the in 369 

vivo microdialysis task, N = 6; values are given as mean ± S.E.M. **p < 0.01 vs. NAc-Mock. 370 

(ANOVA with repeated measures followed by the Bonferroni’s post hoc test) (D) Basal levels of 371 

extracellular dopamine in the NAc were detected by the in vivo microdialysis task, N = 4; values are 372 

presented as mean ± S.E.M. No significant difference between NAc-TMEM and NAc-Mock mice 373 

(Student-t test). (E) Basal levels of extracellular serotonin in the NAc were detected by the in vivo 374 

microdialysis task, N = 3–4; values are given as mean ± S.E.M. No significant difference between 375 
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NAc-TMEM and NAc-Mock mice (Student-t test). 376 

 377 

Overexpression of TMEM168 did not change the basal amount of 378 

extracellular dopamine and serotonin in the NAc 379 

The basal levels of accumbal extracellular dopamine (Fig 5D, t = 0.5635) and serotonin (Fig 5E, t = 380 

0.09495) in the NAc-Mock and NAc-TMEM mice were analyzed using the in vivo microdialysis 381 

method. No significant between-group difference was observed. 382 
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DISCUSSION 383 

Both sensorimotor gating deficit and increased anxiety are often found in patients with addiction 384 

disorder [4, 28]. Repeated METH administration in rodents is usually used as a model to mimic the 385 

decreased PPI and anxiety in schizophrenia [21, 29, 30]; however, a clear link between METH 386 

addiction and emotional properties or sensorimotor gating function still needs to be assessed. In the 387 

present study, we found that the increased METH related molecule TMEM168 in the nucleus 388 

accumbens, induced anxiety in the elevated plus-maze and light/dark box tasks, and resulted in 389 

sensorimotor gating deficit in the auditory PPI task. These findings suggest that TMEM168 in the NAc 390 

is crucial for the modulation of anxiety and schizophrenia-like behaviors in mice. 391 

GABA is a primary inhibitory neurotransmitter associated with emotion regulation anomalies, 392 

including anxiety and panic disorders [31]. Specifically, the reduced concentration of GABA is 393 

thought to be associated with increased anxiety levels [31]. As the injected AAV-TMEM168 vector can 394 

transduce into local neurons preferentially [32, 33], approximately 99% of the affected neuronal 395 

populations in the NAc of NAc-TMEM mice should be GABA neurons [2, 34]. In vivo microdialysis 396 

analysis revealed that the basal levels of extracellular GABA were reduced in the NAc, and GABA 397 

release was also reduced after K+ stimulation in the NAc-TMEM mice when compared with the 398 

control mice. Furthermore, the pharmacological action of anxiety reducing drug, diazepam, which is 399 

known to facilitate GABAergic transmission by binding GABAA receptors [22], reversed the 400 

TMEM168 overexpression-induced anxiety as measured in both the elevated plus-maze and light/dark 401 
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box tasks. These results suggest that a reduction in GABAergic neurotransmission could be linked to 402 

TMEM168-induced anxious behaviors.  403 

The trigger of anxiety is a complex process in the brain, which is related to the activity in multiple 404 

neural circuits. Briefly, the amygdala, bed nucleus of the stria terminalis, and prefrontal cortex (PFC) 405 

are usually identified as the key regions controlling anxiety. As a central relay structure between the 406 

amygdala, basal ganglia, ventral tegmental area (VTA), and PFC, the NAc seems to play a modulatory 407 

role in the anxious signal transmission from the amygdaloid complex to the latter areas [35]. In the 408 

present study, we found that GABA release was inhibited following a TMEM168 transfection in the 409 

NAc neurons locally, including 95% GABAergic medium spiny neurons (MSN) projecting to other 410 

brain regions [2, 34]. As the direct projected targets of the accumbal MSN, the VTA and pallidum are 411 

demonstrated to be relevant to anxiety symptoms via GABAergic dysfunction [36, 37]. Thus, the 412 

interrupted GABAergic projection from the NAc might underlie the mechanism of the increased 413 

anxiety in the NAc-TMEM mice.  414 

The NAc-TMEM mice also showed reduced PPI when compared with the NAc-Mock mice in the 415 

present auditory startle response test. Increased dopaminergic and serotoninergic neurotransmission in 416 

the brain is presumed to reduce PPI in rodents [38, 39]. Risperidone is an antagonist of dopamine 417 

receptor D2, and serotonin receptor 2A in multiple brain regions [40]. In the present study, risperidone 418 

reversed the sensorimotor gating deficit associated with the overexpression of TMEM168 in the NAc. 419 

This might indicate that the overexpression of TMEM168 in the NAc could mediate sensorimotor 420 
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deficits through an increase of dopaminergic or serotoninergic activity. However, no significant 421 

difference in accumbal extracellular dopamine or serotonin between the NAc-TMEM and NAc-Mock 422 

mice was observed. Numerous animal and human studies have indicated that sensorimotor gating 423 

function is regulated by the cortico-striatal-pallido circuit [24, 41]. Hence, the interruption in the NAc 424 

might not be a solitary part of the integral neural pathways. There is a possibility that the 425 

dopaminergic and serotoninergic functions in other accumbal relevant regions such as the PFC, 426 

striatum, and pallidum are indirectly affected by the GABAergic suppression in the NAc, and their 427 

dysfunctions are subsequently normalized by the administration of risperidone in the NAc-TMEM 428 

mice. Although the neurotransmissions in these accumbal relevant regions of the NAc-TMEM mice 429 

are needed to be analyzed in the next study, the functional roles of accumbal TMEM168 in the 430 

METH-induced schizophrenia-like behaviors were demonstrated firstly in the present experiment. As 431 

TMEM168 is an adaptive molecule responding to METH exposure, the study of the increased 432 

TMEM168 in the NAc might open a branch to elucidate the mechanism of the METH-induced 433 

psychotic complications, of which one characteristic symptom is sensorimotor gating deficit. 434 

The downstream signaling pathways of TMEM168 in influencing GABAergic activity or behavioral 435 

events still remain unclear. Repeated administration of METH does not influence the extracellular 436 

GABA levels in the NAc, but the overexpression of TMEM168 via the AAV vector transfection 437 

inhibits the accumbal GABA release. It is suggested that TMEM168 may play some functional roles in 438 

GABAergic regulation independent on the pharmacological effect of METH. The Crk-like protein 439 
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(CrkL), for example, has been found to interact with TMEM168 in a yeast two-hybrid screening study 440 

[42]. CrkL, collectively with Crk, participates in the reelin signaling cascade downstream of DAB1 441 

[43, 44]. The reduced expression of reelin can weaken the GABAergic neurotransmission in 442 

transgenic mice and also schizophrenia or bipolar patients [45-48]. Thus, it could be suggested that the 443 

activation of the TMEM168-CrkL-reelin pathway might induce behavioral changes in the 444 

NAc-TMEM mice altering the GABAergic neurotransmission. Furthermore, in a previous study, we 445 

found that extracellular osteopontin (OPN) was increased in the NAc-TMEM mice [14]. Activation of 446 

integrin receptors is usually determined as the downstream signaling pathway of the secreted OPN 447 

[49]. Mutations of β1- and β3-containing integrins in mice have been linked to anxiety disorders [50]. 448 

Thus, the TMEM168-OPN-integrin receptor could also be implicated in the mechanisms underpinning 449 

TMEM168-effects on behavior.  450 

In summary, TMEM168 overexpression in the NAc neurons could induce a decrease in the 451 

extracellular GABA levels in the NAc, with effects on both anxiety levels and sensorimotor gating 452 

ability. Future research should further explore the role of TMEM168 in emotional properties or 453 

sensorimotor gating function.  454 
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