130 research outputs found

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    Get PDF
    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC

    Sustainable peeling of Kapok Tree (Ceiba pentandra) bark by the chimpanzees (Pan troglodytes verus) of Comoé National Park, Ivory Coast

    No full text
    Primates often consume either bark or cambium (inner bark) as a fallback food to complete their diet during periods of food scarcity. Wild chimpanzees exhibit great behavioral diversity across Africa, as studies of new populations frequently reveal. Since 2014, we have been using a combination of camera traps and indirect signs to study the ecology and behavior of wild chimpanzees (Pan troglodytes verus) in Comoé National Park, Ivory Coast, to document and understand the behavioral adaptations that help them to survive in a savanna–forest mosaic landscape. We found that Comoé chimpanzees peel the bark of the buttresses of kapok tree (Ceiba pentandra) trees to eat the cambium underneath. Individuals of all sex/age classes across at least six neighboring communities peeled the bark, but only during the late rainy season and beginning of the dry season, when cambium may represent an important fallback food. Baboons (Papio anubis) also target the same trees but mainly eat the bark itself. Most of the bark-peeling wounds on Ceiba trees healed completely within 2 years, seemingly without any permanent damage. We recorded chimpanzees visiting trees in early stages of wound recovery but leaving them unpeeled. Only 6% of peeled trees (N = 53) were reexploited after a year, suggesting that chimpanzees waited for the rest of the trees to regrow the bark fully before peeling them again, thus using them sustainably. Many human groups of hunter-gatherers and herders exploited cambium sustainably in the past. The observation that similar sustainable bark-peeling behavior evolved in both chimpanzees and humans suggests that it has an important adaptive value in harsh environments when other food sources become seasonally scarce, by avoiding the depletion of the resource and keeping it available for periods of scarcity

    The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration

    Get PDF
    Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions

    The motivational drive to natural rewards is modulated by prenatal glucocorticoid exposure

    Get PDF
    Exposure to elevated levels of glucocorticoids (GCs) during neurodevelopment has been identified as a triggering factor for the development of reward-associated disorders in adulthood. Disturbances in the neural networks responsible for the complex processes that assign value to rewards and associated stimuli are critical for disorders such as depression, obsessive–compulsive disorders, obesity and addiction. Essential in the understanding on how cues influence behavior is the Pavlovian–instrumental transfer (PIT), a phenomenon that refers to the capacity of a Pavlovian stimulus that predicts a reward to elicit instrumental responses for that same reward. Here, we demonstrate that in utero exposure to GCs (iuGC) impairs both general and selective versions of the PIT paradigm, suggestive of deficits in motivational drive. The iuGC animals presented impaired neuronal activation pattern upon PIT performance in cortical and limbic regions, as well as morphometric changes and reduced levels of dopamine in prefrontal and orbitofrontal cortices, key regions involved in the integration of Pavlovian and instrumental stimuli. Normalization of dopamine levels rescued this behavior, a process that relied on D2/D3, but not D1, dopamine receptor activation. In summary, iuGC exposure programs the mesocorticolimbic dopaminergic circuitry, leading to a reduction in the attribution of the incentive salience to cues, in a dopamine-D2/D3-dependent manner. Ultimately, these results are important to understand how GCs bias incentive processes, a fact that is particularly relevant for disorders where differential attribution of incentive salience is critical.We thank Pedro Morgado for discussions and help in the technical aspects of PIT procedure. This project was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and by Janssen Neuroscience Prize. CS-C, SB, MMC and AJR are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (CS-C: SFRH/BD/51992/2012; SB: SFRH/BD/89936/2012; MMC: SRFH/BD/51061/2010; AJR: SFRH/BPD/33611/2009)

    OrthoList: A Compendium of C. elegans Genes with Human Orthologs

    Get PDF
    C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model.We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∼38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis.We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∼60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described

    Lateral orbitofrontal cortex anticipates choices and integrates prior with current information

    Get PDF
    Adaptive behavior requires integrating prior with current information to anticipate upcoming events. Brain structures related to this computation should bring relevant signals from the recent past into the present. Here we report that rats can integrate the most recent prior information with sensory information, thereby improving behavior on a perceptual decision-making task with outcome-dependent past trial history. We find that anticipatory signals in the orbitofrontal cortex about upcoming choice increase over time and are even present before stimulus onset. These neuronal signals also represent the stimulus and relevant second-order combinations of past state variables. The encoding of choice, stimulus and second-order past state variables resides, up to movement onset, in overlapping populations. The neuronal representation of choice before stimulus onset and its build-up once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming immediate prior and stimulus information into choices using a compact state-space representation

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR

    Whole Genome Sequencing and Evolutionary Analysis of Human Respiratory Syncytial Virus A and B from Milwaukee, WI 1998-2010

    Get PDF
    BACKGROUND: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. METHODOLOGY/PRINCIPAL FINDINGS: We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998-2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. CONCLUSIONS/SIGNIFICANCE: The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics

    LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction

    Get PDF
    PMC3548190Cells continuously sense and respond to external mechanical forces through their cytoskeleton. Here we show that only a small subset of actin fibers, those forming the perinuclear actin cap that wraps around the nucleus, form in response to low physiological mechanical stresses in adherent fibroblasts. While conventional basal stress fibers form only past a threshold shear stress of 0.5 dyn/cm(2), actin-cap fibers are formed at shear stresses 50 times lower and orders-of-magnitude faster than biochemical stimulation. This fast differential response is uniquely mediated by focal adhesion protein zyxin at low shear stress and actomyosin fibers of the actin cap. We identify additional roles for lamin A/C of the nuclear lamina and linkers of nucleus to cytoskeleton (LINC) molecules nesprin2giant and nesprin3, which anchor actin cap fibers to the nucleus. These results suggest an interconnected physical pathway for mechanotransduction, from the extracellular milieu to the nucleus.JH Libraries Open Access Fun
    • …
    corecore