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Lateral orbitofrontal cortex anticipates choices
and integrates prior with current information
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Maria V. Sanchez-Vives3,8 & Rubén Moreno-Bote1,2,9

Adaptive behavior requires integrating prior with current information to anticipate upcoming

events. Brain structures related to this computation should bring relevant signals from the

recent past into the present. Here we report that rats can integrate the most recent prior

information with sensory information, thereby improving behavior on a perceptual decision-

making task with outcome-dependent past trial history. We find that anticipatory signals in

the orbitofrontal cortex about upcoming choice increase over time and are even present

before stimulus onset. These neuronal signals also represent the stimulus and relevant

second-order combinations of past state variables. The encoding of choice, stimulus and

second-order past state variables resides, up to movement onset, in overlapping

populations. The neuronal representation of choice before stimulus onset and its build-up

once the stimulus is presented suggest that orbitofrontal cortex plays a role in transforming

immediate prior and stimulus information into choices using a compact state-space

representation.
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M
aking a decision in real life requires the integration
of preceding and current information to adaptively
guide behavior1,2. Previous work has investigated the

neuronal regions responsible for achieving this goal by using
experimental paradigms where the sequence of external events, or
history, flows independently of the choices of the actor1,3,4. In
many cases, however, choices of an actor can influence future
external events, and so to speak, change the course of history.
Relatively less work has been devoted to the study of tasks in
which recent past information matters for the current choice
and immediately previous choices affect the upcoming states of
the world2,5–8.

The orbitofrontal cortex (OFC), like other regions in the
prefrontal cortex, is thought to play an important role in adaptive
and goal-directed behavior9–15. Previous single-neuron accounts
have demonstrated that OFC encodes a myriad of variables that
are relevant for behavior in decision-making12, such as primary
rewards and secondary cues that predict them16,17, values of
offered and chosen goods18–20, choices and responses19,21–24,
expected outcomes25 and stimulus type26, while human
brain imaging studies have corroborated and largely extended
these results9,27–30. However, in contrast to other prefrontal
and parietal brain areas3,31,32, the OFC displays relatively
weak choice-related signals19,22–24. Further, neuronal signals
anticipating upcoming choices before stimulus onset have not
been described, except in a single report in monkeys22. This has
led to the predominant view that OFC is not responsible for
action initiation and selection14,20,21. Here, in contrast, we
hypothesize that OFC plays a central role in decision-making,
first, by representing the central latent variables of the task
(state-space) and, second, by combining the most recent past
with current stimulus information. We hypothesize also that
this combination of information happens through a compact
representation of the task’s state-space, that is, by representing
predominantly the variables of the immediate past that are critical
to perform the task. We support this hypothesis through our
findings that OFC (1) represents choice initiation and choice
selection even before sensory evidence is available, (2) encodes
the state-space determined by just the previous trial (here called
immediate prior or immediate past information), (3) integrates
the immediate prior information with current sensory evidence
and (4) promotes filtering out behaviorally irrelevant variables.

In this study we use an outcome-coupled perceptual decision-
making task that requires integrating prior information from the
previous trial with an ambiguous stimulus. This task is designed
to maximize the chances of revealing choice initiation and choice
selection signals that integrate both immediate prior and current
information. Rats efficiently solve this task by using the relevant
second-order combination of previous choice and reward and
combining this most recent prior information with currently
available information of a perceptually challenging stimulus.
On the basis of single-neurons and simultaneously recorded
neuronal ensembles in the lateral OFC (lOFC), we find a build-up
of choice-related signals across time; critically, upcoming choice
can be traced back to a period of time before stimulus onset.
Overlapping neuronal populations encode choice, immediate
prior and stimulus information stably over time up to movement
onset. These neuronal populations represent behaviorally relevant
variables in a task-structure dependent way. For example,
information about the immediate past cease to be represented
once such variables become behaviorally irrelevant due to a
change in the task structure. Similarly, in the main task, the
coexistence of choice-related and latent variables within the same
neuronal circuits enables lOFC to play an important role in
integrating prior with stimulus information to aid choice
formation using a compact state-space representation. Our results

are consistent with the hypotheses that OFC plays a role in the
temporal credit-assignment problem, the problem of correctly
associating an action with a reward delayed in time9,14 and in
representing latent states11. Furthermore, our work adds the
view that lOFC might play a central role in decision-making
by integrating immediate prior information with current
information through a refined encoding of the state-space in
the task.

Results
Animals use task-contingencies to improve performance. Rats
performed a perceptual decision-making task (Fig. 1a), which in
each trial consisted in classifying an inter-tone time interval (ITI),
as short (S¼ s) or long (S¼ l). The rats self-initiated the trial with
a nose poke in the central socket, after which they had to hold the
position until the ITI had completely elapsed. A correct response
was defined as poking into the left socket if the stimulus was
short, and into the right socket if the stimulus was long, after
which the rat was rewarded with water. A stimulus was con-
sidered difficult if the inter-tone interval was close to the category
boundary, and easy otherwise (Fig. 1a). Importantly, in our task
the choices of the animal influenced the history of future events.
Specifically, in the trial following a correct response (R¼ þ 1),
the ITI was drawn uniformly at random from eight possible
values, while in trials following an incorrect response (R¼ � 1),
the stimulus was repeated (Fig. 1b). This sequence created a rich
environment, whereby in many trials the ITIs were not drawn
randomly. Rather, the environment was formally described as an
outcome-coupled hidden Markov chain, that is, a Markov chain
in which the sequence of trials is coupled with the outcomes of
the animals’ choices. The Markov chain was hidden because of
two reasons (Supplementary Fig. 1): first, due to potential limits
in memory and attention, we did not consider previous trials as
fully known; and second, the stimulus was not fully visible at
any trial, especially so in the most difficult trials (Fig. 1a). The
combination of independent trials after correct responses and
fully dependent trials after incorrect responses allowed us to
distinguish signals from the past from those that anticipated
upcoming events, as discussed in the next section.

From an ideal observer’s perspective, there is critical
information that the animal should monitor to perform the task
efficiently. The outcome in the previous trial, R� 1, determines
whether the stimulus in the next trial will be repeated or drawn
randomly: if the previous outcome was incorrect (R� 1¼ � 1),
then the stimulus will be repeated in the next trial, while if the
previous trial was correct (R� 1¼ þ 1), then the next stimulus
will be randomly drawn. Therefore, if the animal tracks the
outcome R� 1, its behavior will improve because it could often
anticipate the stimulus. In fact, the three rats learnt this task
contingency by using the previous outcome to improve
their behavior (Fig. 1c; individual rats and fits shown in
Supplementary Fig. 2). First, all animals featured a psychometric
curve (computed after correct trials) with a larger fraction of
correct responses for easy than for difficult trials (rat 1:
difference¼ 9.8 pp (percentage points), non-parametric one-
tailed bootstrap, Po10� 4; rat 2: difference¼ 10 pp, Po10� 4;
rat 3: difference¼ 8.0 pp, Po10� 4; see Methods). Importantly,
when the psychometric curve was computed after incorrect trials,
the slope of this curve increased significantly for all rats (rat 1:
percentage change¼ 42%, non-parametric one-tailed bootstrap,
P¼ 4.4� 10� 3; rat 2: percentage change¼ 81%, Po10� 4; rat 3:
percentage change¼ 110%, P¼ 5� 10� 4). The improvement
was substantial, with an average relative increase of 9 pp in
performance in difficult trials after incorrect responses compared
to after correct responses (non-parametric one-tailed bootstrap,
Po10� 4).
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Consistent with the observation that the animals use the
structure of the outcome-coupled hidden Markov chain to
improve their behavior, we also found that on a session by
session basis animals predominantly followed the lose-switch part
of a win-stay-lose-switch strategy with a substantially weaker
win-stay part (Fig. 1d; all rats: difference lose-switch—win-stay
probabilities¼ 0.24 pp; non-parametric one-tailed bootstrap,
Po10� 4; see Methods). Following a lose-switch strategy with
no win-stay bias would lead to optimal behavior in our task if,
ideally, the Markov chain were fully visible (not hidden).
However, the actual ITI category in each trial is unobserved
(because some trials are difficult) and the past might not be fully
known due to memory leak. Consistent with this, the rats
displayed some departures from the optimal strategy, in
particular featuring a significant win-stay component in their
behavior (rat 1: mean 0.51, non-parametric one-tailed bootstrap,
P¼ 1.0� 10� 3; rat 2: mean¼ 0.54, Po10� 4; rat 3: mean¼ 0.75,
Po10� 4).

The observed changes in the psychometric curve suggest that
animals track a variable that jointly monitors previous choice
C� 1 (C� 1¼ � 1 if the choice was long, or C� 1¼ þ 1 if it was
short) and previous outcome R� 1. This second-order prior
variable informs the rat about what choice it should make
after an incorrect response, and mathematically is expressed as
X� 1¼C� 1�R� 1 (Methods). The state-space in our task
consists both of the previous outcome and second-order prior,
because these two variables fully define all that needs to be known
by the rat to behave efficiently in this task. These two variables
also fully define the prior information that is task-relevant, called

immediate prior information. To confirm the prediction that the
rats keep track of the second-order prior, X� 1, we asked how well
past events are able to predict the upcoming choice C0. Among
the large number of behavioral variables that could influence
upcoming choices, we found that the second-order prior X� 1 was
the most predictive quantity, only surpassed by the stimulus itself,
S0 and followed by the previous outcome R� 1 (Supplementary
Fig. 3; Supplementary Methods).

Single-cells encode upcoming choice and second-order prior.
We looked for neural coding of immediate prior information and
upcoming choices throughout the trial. Tetrodes were inserted in
the right hemisphere of the rat lOFC (Fig. 2a). Small ensembles of
well-isolated single units were simultaneously recorded (mean
size¼ 2.9±1.6 neurons). Our dataset consisted of a total of 137
single-neurons with an average of 684 behavioral trials, eliciting a
median of 9000 spikes per neuron, before excluding neurons
with mean firing rates below 1 Hz (including all cells did not
qualitatively influence the results; for a detailed description of the
total number of cells for each analysis see Methods and for an
additional power analysis for the number of cells and rats see
Supplementary Methods). Recordings started after rats had
reached a performance of at least 75%.

Our behavioral results suggest that the animals closely monitor
second-order prior, X� 1, and other variables that correlate
with it, such as previous choice C� 1 and resulting outcome R� 1.
We reasoned that if OFC participates in the decision-making
process, then OFC neurons should encode these variables as well
as reveal signals that anticipate upcoming choices. To test this
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Figure 1 | Rats use the trial-by-trial-dependent contingencies of the task to improve their performance. (a) Schematic of the task (see Methods for

details). Two identical, consecutive tones (T1 and T2) are presented to the rats (top panel). Inter-tone intervals (ITIs) can belong to two stimulus

categories: short, S¼ s, or long, S¼ l. Each category has four possible ITIs (short: 50, 100, 150 and 200 ms; long: 350, 400, 450, 500 ms). The vertical

dotted line represents the decision boundary at 275 ms. Difficult ITIs, depicted in gray, lie close to the decision boundary. Sequence of events within a trial

(bottom panel): from trial initiation to choice. Rats self-initiate the trial and sample the stimuli in the central socket. They are rewarded with water if they

poke the right socket when the stimulus is long, and the left socket when the stimulus is short (for rat 3 the contingency was the opposite). (b) The

sequence of trials follows an outcome-coupled hidden Markov chain (see also Supplementary Fig. 1): a new random stimulus condition is presented after a

correct response (þ ), while the same stimulus condition is presented after an incorrect response (� ). (c) Psychometric curves (probability choice long

versus ITI) after correct responses (green line) and after incorrect responses (red line) for an example rat (left panel) and for all rats (right). The slope of

the psychometric curves after incorrect responses substantially and significantly increases relative to the slope of the curve after a correct response. Error

bars (shaded) are estimated by bootstrap (one s.d.). (d) Probability of lose-switch versus probability of win-stay. Each point corresponds to a different

session. Rats predominantly follow a lose-switch over a win-stay strategy. No strategy being followed corresponds to the point (0.5, 0.5) in the plot.
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prediction, we initially focused on the trial initiation period,
where the stimulus has not yet been presented. We first aligned
the neuronal responses to the initiation of the trial (Fig. 2b).
Before performing pooled population-level analyses, we will first
focus on the tuning of some example neurons. We found neurons
whose trial-averaged activity illustrated a diversity of behaviors
associated with both backward and also forward events. In Fig. 2
we show some individual examples. We identified neurons that
showed conspicuous modulations as a function of the previous
outcome (Fig. 2c), previous choice (Fig. 2d), second-order prior
(Fig. 2e) and interestingly, also about upcoming choice (Fig. 2f).
The neuron shown in Fig. 2f could predict upcoming choice with
an accuracy of 71% (AUC, see Methods).

These quantities were also encoded throughout the trial
(Fig. 3). Just before stimulus offset (Fig. 3a–d), when the animal
is still poking into the central port, stimulus information is
strongly represented in some neurons in lOFC (Fig. 3b). Signals
about the upcoming choice were also clearly visible in this
pre-movement period (Fig. 3c). This neuron predicted upcoming
choice with 84% accuracy (AUC). Finally, the firing rate of some
cells was modulated by the expected value of the outcome, EV0

(Fig. 3d; Methods). When we analysed single-neuron responses at
lateral nose poking onset (Fig. 3e), we found neurons whose rate
was largely modulated by stimulus (Fig. 3f). Signals about the
current choice were also strongly present, as shown by the
example neuron in Fig. 3g. This neuron predicted the performed
choice with 87% accuracy (AUC). We also observed outcome-
modulated neurons in this period (Fig. 3h). Thus, even single-
neuron activity by itself already provided strong indication that
lOFC was representing the task-relevant variables.

OFC encodes immediate prior and anticipates future choices.
We confirmed the single-neuron observations at the population
level with a Generalized Linear Model (GLM) analysis of the
spike count responses of single-neurons. To do so, we regressed

the spike count of each single-neuron simultaneously against a
large set of variables, including the stimulus, reward, choice,
difficulty and second-order prior of the current trial, the previous
trial and up to three trials in back (Methods). This approach was
preferred over a receiver operating characteristic (ROC) approach
because the latter might find significant AUC values even in
the absence of veridical encoding of the variable, simply due to
correlations with other encoded variables (see Methods).

Before stimulus onset, we found that a significant fraction of
neurons (25%, one-tailed binomial test, n¼ 76, P¼ 4.6� 10� 9)
predicted the upcoming choice, C0 (Fig. 4a). Significant fractions
of cells also encoded the second-order prior X� 1, previous choice
C� 1, and the previous outcome R� 1. Thus, the neurons shown in
Fig. 2 represent just examples of potentially overlapping large
neuronal populations that encode these variables. Interestingly,
we did not find a substantial fraction of cells encoding
information from two or more trials into the past, suggesting
that information older than arising from the preceding trial is not
present in lOFC.

We found that cells encoded both current stimulus S0 and
current outcome R0 (S0 and R0, 11% each, one-tailed binomial
test, n¼ 76, P¼ 0.036) even before stimulus onset. Although at
first glance surprising, this result arises from the outcome-
coupled hidden Markov chain structure of the environment.
In fact, when we repeated our GLM analysis using only trials after
correct responses—where the upcoming stimulus cannot be
predicted from the stimulus used in the previous trial—we found
that neither stimulus S0 (9%, one-tailed binomial test, n¼ 76,
P¼ 0.085) nor reward R0 (9%, one-tailed binomial test, n¼ 76,
P¼ 0.085) information was present before the onset of the
stimulus (Supplementary Fig. 4). Focusing instead only on
trials after incorrect responses, we again found that a substantial
fraction of cells (14%, one-tailed binomial test, n¼ 76,
P¼ 1.3� 10� 3) can predict the stimulus. Altogether, our results
show that, before stimulus onset, lOFC tracks the second-order
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prior X� 1, and anticipates the upcoming choice, C0. Thus, rat
lOFC carries sufficient information to play an important role in
integrating immediate prior information with sensory information.

Build-up of choice-related neuronal signals. If OFC represents
the integration of immediate prior with current information, then
information about upcoming choices should increase as further
evidence is integrated into the system. For instance, just before
stimulus offset, information about the stimulus is readily
available, and should be combined with prior information to
inform decisions. In fact, a substantial fraction of cells encoded
the upcoming choice C0 just before stimulus offset (Fig. 4b). This
fraction was large (30%, one-tailed binomial test, n¼ 87,
P¼ 7.6� 10� 14), and larger than during the pre-stimulus period,
though not significantly (see Fig. 4a,b; difference¼ 5 pp,
one-tailed non-parametric difference binomial test, P¼ 0.25; see
Methods). Integration of information at the population level
could be accomplished within the same circuit, as a large fraction
of cells also encoded the stimulus S0 in the current trial (33%,
one-tailed binomial test, n¼ 87, P¼ 1.1 � 10� 16). Interestingly,
in the choice period, 77% of all cells (60/78 neurons) encoded
choice (Fig. 4c) –significantly more than in the pre-stimulus
periods (Fig. 4a,b; difference¼ 52 pp, one-tailed non-parametric
difference binomial test, Po10� 4). Thus, there is a build-up of
choice-related signals in lOFC, as illustrated when plotted as a
function of the analysis time period (Fig. 4d).

Stimulus also seemed to be encoded in OFC in a sensible way,
with information peaking before stimulus offset. We found
that the fraction of neurons encoding stimulus S0 increases
significantly from trial initiation to the stimulus offset
period (Fig. 4d; difference¼ 23 pp, one-tailed non-parametric
difference binomial test, P¼ 2.2� 10� 4) and decreases signifi-
cantly thereafter (difference¼ 18 pp, one-tailed non-parametric
difference binomial test, P¼ 3.9� 10� 3). Encoding of past task
events, such as second-order prior, previous choice and previous
reward, declined as time progressed over the trial (Fig. 4d; C� 1:

difference¼ 12 pp, one-tailed non-parametric difference binomial
test, P¼ 0.036; X� 1: difference¼ 11 pp, P¼ 0.033; R� 1:
difference¼ 19 pp, P¼ 2.2� 10� 3; differences computed
between pre-stimulus and choice periods). Altogether, these
time profiles suggest that information about stimulus and
second-order prior is incorporated into choice-related signals to
mediate the integration of information.

We found a correlation between the encoding weights for
upcoming choice computed at the pre-stimulus and stimulus
offset periods (Fig. 5a; Methods). The same was observed for the
weights computed for second-order prior, previous choice and
previous reward. This suggests that the encoding of these
variables is partially sub-served by stable populations during the
periods of time in which prior information needs to be integrated
with sensory information. However, their encoding differed in the
choice period, precisely when sensory information does not need
to be integrated any more, as not such correlation was observed
(Fig. 5b). In particular, the increase of choice-encoding neurons
over time reported in Fig. 4d suggests that the lack of correlation
between encoding during stimulus offset and choice periods
might arise from a recruitment of additional choice-related cells,
potentially motor-related. We also found that the encoding
weights of second-order prior and upcoming choice were
positively correlated during the pre-stimulus period (Fig. 5c;
Methods), suggesting that populations of neurons encoding the
previous trial’s state and upcoming choice partially overlap before
stimulus presentation.

Some differences in behavior across animals were clear (see
Fig. 1d and Supplementary Fig. 2), with rat 3, for instance,
displaying a higher lose-switch probability than the other rats. We
first confirmed in a separate analysis that none of the qualitative
results described above changed when neurons recorded from
this rat were excluded from the analysis. We also confirmed that
rat-by-rat analysis of neuronal populations delivered the same
trends as reported above, generally including encoding of
upcoming choice before stimulus onset and the ramping of
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choice-related information across time periods (Supplementary
Fig. 5).

Expected value and outcome representations. After stimulus
presentation, at stimulus offset, the animal might have a sense of
how difficult the trial was. This informs about the subjective
probability (confidence) of getting a reward, as easy trials should
promise a more secure reward than difficult trials. Since in our
experimental setup we do not vary the reward amount, encoding
the subjective probability of a positive outcome amounts to the
expected value in the current trial, which in turn is inversely
related to the difficulty of the trial (see Methods). In this time
epoch, the expected value was encoded in a large fraction of cells
(Fig. 4b; 29%, one-tailed binomial test, n¼ 87, P¼ 6.1� 10� 13).
Previous work has also found that signals about decision
confidence are encoded in the activity of single-cells in rat OFC
(ref. 33), and in monkey parietal cortex34. We also found in this
period of time a large fraction of cells that encode outcome in a
predictive way, as this variable can be partially inferred based on
the difficulty of the trial. Outcome was also encoded at the choice
period (Fig. 4c), consistent with the role of this area in encoding
reward and outcomes16,17.

Behaviorally irrelevant prior is not represented in OFC. The
previous results demonstrate that OFC represents state-space
when rats are in an environment where it is behaviorally
advantageous to keep track of this information. We tested the
encoding of immediate prior information when this information
was irrelevant by placing the same rats in an environment where
they were passively exposed to the same set of stimuli but rewards
were not delivered. Rats were exposed to two passive stages,
before and after the decision-making stage (see Methods). We
found that OFC did no longer keep track of the immediate prior
information (defined as previous stimulus S� 1 in the passive
environment, equivalent to X� 1 in the decision-making stage; see
Methods) at any time during the trial (Supplementary Fig. 6).
Encoding of current stimulus and difficulty at the stimulus-offset
period weakly persisted in this environment, suggesting that task-
irrelevant variables observable at the current trial are not com-
pletely filtered out in OFC. These results suggest that OFC does
not monitor state-space from the immediate past when this
information is task-irrelevant.

Population decoding reveals a hierarchy of variables in OFC.
Our previous analysis has revealed that, following correct choices,
only two variables are significantly encoded in the pre-stimulus
period in single OFC neurons, namely, second-order prior and
upcoming choice (Supplementary Fig. 4). We confirmed that this
result holds using a much more stringent test that does not
assume that both variables are encoded linearly, as we did before.
To do so, we used decoding techniques that predict one quantity
at a time from the population activity of a simultaneously
recorded neuronal ensemble35, while keeping the other quantity
constant (Fig. 6; Methods). We found that a classifier trained on
the pre-stimulus activity of a neuronal ensemble at fixed second-
order prior X� 1 conveyed substantial information about
upcoming choice (Fig. 6a). Similarly, when conditioning the
activity to upcoming choice C0, we found that small neuronal
populations conveyed substantial information about second-
order prior (Fig. 6b). These results hold both across all neuronal
ensembles in the dataset and when selecting only the 10% most
informative ensembles. Decoding performance increased
monotonically with the number of neurons in the ensemble
(Fig. 6a,b)36,37. Because this conditioning-based decoding analysis
does not assume that these two variables are both encoded
linearly, in contrast to our previous analysis (Fig. 4), these results
add strong support to the conclusion that both immediate prior
information (that is, second-order prior) and upcoming choice
are encoded in lOFC.

Which variables are most readily decoded at the population
level? The analysis from the previous sections would suggest
upcoming choice and prior information as strong contenders.
However, this analysis was based on single neurons and ignored
correlations that might be present in neuronal populations and
might influence the representation of those variables. To more
directly address this question, we trained a classifier as in the
previous paragraph to decode per trial individual variables from
the activity of small neuronal ensembles (Methods). Using this
approach, we found that, consistent with the previous
linear encoding analysis (Fig. 4d), the 10% most informative
neuronal ensembles had larger amounts of information about
upcoming choice than about any other variable (Fig. 7) from the
pre-stimulus to the choice periods. Information about the
upcoming choice C0 was so strongly present in lOFC that it
could be predicted from holdout data not used to train the
classifier with an accuracy of 57% for all ensembles and 76% for
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the top 10% ensembles in the pre-stimulus period, 64 and 78% at
the stimulus offset period, and 79 and 92% at the choice period
(Fig. 7a–c), respectively. The population decoding analysis also
again revealed second-order prior as one of the most prominently
encoded variables (Fig. 7a–c). Other variables were also decodable
from the lOFC, but less accurately. Therefore, the population
decoding analysis confirms that lOFC tracks prior information on
a trial by trial basis and predicts upcoming choice.

Finally, in view of the individual behavioral differences across
animals, we sought to determine whether they were correlated
with neuronal differences. We found a positive correlation
between lose-switch probability and neuronal information about
both upcoming choice and second-order prior, although this
correlation did not reach significance (Supplementary Fig. 7;
permutation test, n¼ 3, P¼ 0.16, Supplementary Methods). Thus,
animals that were more likely to switch after an incorrect
response tended to provide a better information-readout in OFC
ensembles about variables that are strongly linked to that
switching behavior.

Discussion
OFC is thought to play an important role in adaptive and
goal-directed behavior9–15. However, as OFC has been shown to
encode a myriad of variables, including outcomes, expected
rewards and values12,16–25, a coherent picture of its function
is still missing. Previous work on reversal learning38–40 and
Pavlovian-instrumental transfer41 has revealed that OFC function

reflects crucial aspects of learning, particularly by developing
novel representations of associations between cues and their
predicted rewards40,42,43, and by tracking the history of previous
outcomes and choices during reward-guided decisions44,45. These
results show that OFC is important to process prior information
that builds over an extended sequence of previous trials to guide
behavior. However, it is not well known whether this goal is
accomplished through a compact representation of the task’s
state-space, or by representing all sorts of task-relevant and task-
irrelevant variables. Further, whether state variables can be
represented exclusively from the previous trial at a high temporal
resolution is not known.

We specifically tackled these questions by using a novel
perceptual decision-making task endowed with an outcome-
coupled hidden Markov chain. By introducing outcome-
dependent correlations between consecutive stimuli, we ensured
that the animal needed to track on a trial by trial basis the most
recent past information to solve the task efficiently. This
experimental design maximized the chances of finding state
variables that need to be represented at high temporal resolution.
It also maximized the chances of identifying interactions of these
variables with choice-related signals during the decision-making
process. In addition, by inserting random trials after correct
responses, an analysis based on systematically conditioning on
different task variables allowed us to distinguish neuronal signals
that were purely associated with either the immediate past (for
example, second-order prior) or future (upcoming choice) events.
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Thus, this task constitutes an important contribution to the
classical perceptual decision-making literature by adding the
necessity of considering immediate prior information. Indeed,
except for some notable exceptions2,5,8,46, the study of perceptual
decision-making has been dominated by paradigms where
sensory information, presented in a random sequence of trials,
suffices to inform a correct choice such that prior information
from the previous trial can and should be ignored altogether1,47.
In this line, many studies have emphasized continuous
integration of information over time within a trial1,3,48. As a
consequence, relatively less work has focused on the discrete-like
process required to integrate proximal prior events with sensory
information49.

One important feature of our task is that relevant prior
information was exclusively present in the previous trial. This
immediate prior information was encapsulated in the second-
order prior variable X� 1, the interaction between previous trial
choice and reward. The second-order prior along with the
previous outcome fully defined the state-space in our task.
Our results show that lOFC represents the structure of the task in
a compact way, as we found that second-order prior was

among the most strongly encoded variables in lOFC. Our results
are in line with a theoretical proposal11 recently supported by
human functional magnetic resonance imaging (fMRI) and rat
inactivation studies46,50 that OFC represents the state-space,
and hence add electrophysiological single-cell and neuronal
population evidence for such theoretical scenario. In contrast,
previous work has shown that in other brain areas, like the
dorsolateral prefrontal cortex in monkeys, both task-relevant and
task-irrelevant information is encoded in value-based decision-
making47,51. In addition, we also embedded animals in an
environment in which they had to ignore prior information. In
this environment, immediate prior information seemed to be
abolished in OFC, suggesting that OFC differentially represents
state variables that are relevant for the task.

Another important question is the degree of involvement of
OFC in the decision-making process. We found a definite
encoding of choice-related variables throughout the decision
process, appearing even before stimulus onset. This result is
consistent with recent work where monkey OFC population
activity has been postulated to represent an internal deliberation
mediating the choice between two options52. It is also in line with
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a large body of work showing that OFC plays an important role in
goal-directed behavior and thus in action initiation and selection
(for example, see refs 46,53–57). Previous work has also found
evidence that a multitude of areas are involved in action initiation
and selection, such as parietal and prefrontal areas3,4,19,21,24,31.
However, our results constitute the first report of the existence of
neurons in the rodent OFC that have predictive power about
upcoming choices before stimulus onset. Interestingly, some of
these neurons were found to anticipate upcoming choice with a
success probability of 69% (out of 750 test trials not used for
training, 520 were correctly predicted using logistic regression),
thus demonstrating the presence of strong choice-encoding
neurons in OFC even during the pre-stimulus period. At the
population level the fraction of neurons encoding for upcoming
choice before stimulus onset was strong and highly significant.

Finally, we found evidence that the observed compact
representation of state-space in OFC can play a role in integrating
immediate prior with current information. First, we found a
strong representation of current stimulus information that
declined after stimulus offset, an effect that was accompanied
by a large increase of choice-related signals representing the
integration of stimulus with prior information. This result
suggests that the neuronal representation of the state-space
interacts in the OFC with the decision-making process,
potentially by facilitating the combination of prior with current
information. This result is consistent with a recent human
fMRI study suggesting that OFC represents posterior probability
distributions by integrating extended prior experience with
current information58.

All in all, our results provide an integrative view of the rodent
lOFC by showing that it predominately represents state-space
(in particular, second-order prior), the integration of immediate
past with current information, and the initiation and selection of
choices. Our results, finally, open an interesting door to study the
link between individual differences in behavior and detailed OFC
electrophysiological encoding, by suggesting that animals that
lose-switch more also have a stronger neuronal representation of
past behaviorally relevant variables, and support the notion that
across-subjects OFC differences modulate overall behavior, such
as risk-seeking59 and drug-seeking60 behaviors.

Methods
Behavioral task. Three Wistar rats were trained to perform an auditory
time-interval categorization task. Trials were self-initiated by the animals by nose
poking, which elicited a pure tone of 50 ms duration after a random delay drawn
from a uniform distribution with values 50, 100, 150, 200, 250 and 300 ms.
A second tone, identical in duration and frequency to the first one, was presented
after a time interval, called ITI. The task is to categorize the ITI, as short (S¼ s)
or long (S¼ l). ITIs are drawn randomly (see below for incorrect trials) from a
uniform discrete distribution with values 50, 100, 150 or 200 ms for short intervals
(S¼ s) and 350, 400, 450 or 500 ms for long intervals (S¼ l). Reward is provided in
trials in which the animal sampled the full stimulus and poked to the left (right)
socket, when the stimulus was short (resp. long). False alarms (poking in the
opposite side) or early withdrawals (withdrawal before stimulus termination) were
punished with a 3-s time out and a white noise (WAV-file, 0.5 s, 80-dB sound
pressure level). After an incorrect trial, the ITI of the previous trial was repeated.
This experimental design created correlations across trials based on the behavior of
the animal. The mean fraction of false alarms was 0.08, 0.11 and 0.15 and the mean
fraction of early withdrawals was 0.37, 0.31 and 0.14 for rat 1–3, respectively.
All trials during task performance were self-initiated. The animals went through
two additional passive stages before and after the decision-making stage described
above. During the passive stages rats were presented with the same set of stimuli
as in the decision-making stage while they could freely move around the
environment. Rewards were not provided at any time during the passive stages.
Passive stage A occurred before the decision-making stage and it lasted a fixed set
of stimulus presentations (rat 1: 400 trials; rat 2: 600 trials and rat 3: 600 trials).
Passive stage B occurred after the decision-making stage, and it lasted the same
number of stimulus presentations as in passive stage A. The experiment was
approved by the animal Ethics Committee of the University of Barcelona. Rats were
cared for and treated in accordance with the Spanish regulatory laws (BOE 256;

25-10-1990), which comply with the European Union guidelines on protection of
vertebrates used for experimentation (EUVD 86/609/EEC).

Psychometric curve analysis. Each rat’s psychometric curve was defined as the
fraction of long choices over all completed trials (correct trials and false alarms),
as a function of the ITI after merging all the sessions for that animal. The all-rats
psychometric curve was computed by merging all sessions from all rats. We
compared the percentage of correct answers (performance) when trials were easy
(ITI¼ 50, 100, 450 and 500 ms; far from category boundary) against the percentage
of correct answers when trials were difficult (ITI¼ 150, 200, 350, 400 ms; close to
category boundary). Significance testing of the difference of animals’ performance
between easy and difficult trials was based on the non-parametric bootstrap, as
follows. We randomly selected with replacement k trials (where k is the total
number of trials after merging all sessions for a particular animal or all sessions
from all animals for the all-rats case) from the set of trials and assessed each rat and
all-rats performances on easy and on difficult trials. We repeated this procedure
10,000 times and compared the difference of the resulting two distributions to a
reference value, in this particular case zero. We defined the probability that
performance on easy trials was equal to performance on difficult trials by the
fraction of samples that fell above zero. The reported one-tailed P values were equal
to that fraction.

Psychometric curves from trials after correct (error) responses were computed
by considering only those trials that followed a correct (incorrect) response. For
each rat and all-rats we compared the psychometric curve after correct trials with
the psychometric curve after incorrect trials. Each curve was fitted with the
following function61:

Pl ITI j m;s; g; lð Þ ¼ gþð1� g� lÞ 1

s
ffiffiffiffiffi
2p
p

ZITI

�1

e�
1

2s2 x� mð Þ2 dx

0
@

1
A ð1Þ

where Pl ITIð Þ is the probability of long choice as a function of the time difference
between tones. The fitted parameters g, 1�l, correspond to the lapse rates for
short ITI and long ITI respectively, whereas the parameters m and s correspond to
the centre and the inverse slope of the sigmoid function, respectively. We included
lapse rates to avoid biased slope and centre parameter estimates61. The parameter
estimates corresponded to the maximum likelihood solution of a binomial process
with an expected value as a function of ITI defined by equation (1). We compared
the steepness of the psychometric curve after correct and incorrect responses by
means of the difference in inverse slope parameters s for the two conditions
divided by the slope after correct trials (percentage change). Statistical significance
was assessed by a non-parametric one-tailed bootstrap (10,000 repetitions), where
we assigned uncertainty intervals to the estimated parameters and compared their
difference to the reference value zero, as above. To test for significance of
performance increase of the psychometric curves computed after incorrect and
correct trials we used non-parametric one-tailed bootstrap as described above.
The same test was used to test significance for the win-stay and lose-switch
probabilities, as well as for testing if they differed.

Neural data. Recordings were obtained from three Wistar rats that were
chronically implanted with tetrodes in their lateral orbital frontal cortex (lOFC)
(Fig. 2a). We used the pre-stimulus (or trial-initiation), stimulus offset and choice
periods for neuronal data analysis. The trial-initiation period starts with the rat
nose-poking into the central socket and lasts for 150 ms. The stimulus offset period
starts 100 ms before the second tone onset and it lasts until tone offset (150 ms in
total). The choice period corresponds to a 150 ms time window that starts with
nose-poking into one of the two lateral sockets.

A total of 137 single units were recorded from three rats (53, 62 and 22 from
rats 1–3, respectively). On average 2.9±1.6 neurons (max 8) across all rats and
sessions were recorded simultaneously. We excluded all neurons firing at o1 Hz
from further analysis, because their low firing rate precluded any reliable statistical
analysis. All results remained qualitatively similar when including these cells. For
the pre-stimulus, stimulus offset and choice periods, 76 (rat 1: 32; rat 2: 30; rat 3:
14), 87 (rat 1: 35; rat 2: 33; rat 3: 19) and 78 (rat 1: 34; rat 2: 30; rat 3: 14)
single-units fulfilled the criterion, respectively (firing above 1 Hz). After filtering
out low-activity units, the mean number of simultaneously recorded neurons across
all rats and all sessions was 2.0±1.0. Figures 2 and 3 were generated using a 100 ms
causal rectangular window, sliding in steps of 50 ms. The total mean number of
trials across sessions was 684, with an average number of 538 correct and 145 error
trials. This led to a median of 9,000 spikes per neuron, before neuron exclusion,
and a high-signal to noise ratio quality for hypothesis testing (see main text).
Further details about the recordings and the experimental setup are provided in
Supplementary Methods.

ROC analysis. For each neuron we computed the area under the curve (AUC) for
a particular task variable as the probability of sampling a larger spike rate r from
P(r|z¼ 1) than from P(r|z¼ � 1), where z refers to any of the binary task vari-
ables62,63. For AUC values below one half we reversed the populations, to ensure
AUCs of at least one half.
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Generalized linear model for neuronal activity. For the GLM analysis, for each
neuron we fitted the spike count in one of the three periods defined previously by:

nj � Poisson f � 1
Xk

i¼0

oixi

 ! !
ð2Þ

where the link function f( � ) was taken to be the natural logarithm. The argument
of the link function is a weighted sum over an exhaustive family of k binary
regressors:

Xk

i¼0

oixi ¼ o0 þo1R� 3 þo2D� 3 þo3C� 3 þo4X� 3 þ

þo5R� 2 þo6D� 2 þo7C� 2 þo8X� 2 þ
þo9R� 1 þo10D� 1 þo11C� 1 þo12X� 1 þ
þo13R0 þo14EV0 þo15C0 þo16S0

ð3Þ

Here R� n is the reward given to the rat n trials back in time, that is, the correctness
of the response (þ 1 correct, rewarded, � 1 incorrect, non-rewarded); D� n is the
trial difficulty defined on the basis of the distance between the presented ITI and
the category boundary (50, 100, 450 and 500 ms, easy trial, D� n¼ þ 1; 150, 200,
350 and 400 ms, difficult trial, D� n¼ � 1); C� n is rat’s choice (þ 1 short choice,
� 1 long choice) and X� n (n-back second-order prior) is the interaction term
between reward and choice, X� n¼R� n�C� n. Thus, the variable X� n is also
binary and it takes the value X� n¼ 1, when R� n was correct (incorrect) and C� n

was short (long) and the value X� n¼ � 1 when R� n was incorrect (correct) and
C� n was short (long). For the current trial (n¼ 0), we renamed difficulty D0 by
EV0, and refered to it as expected value, because it is of more conventional use.
As S� n and X� n are the same variable, we excluded in equation (3) the former for
past trials and the latter for the current trial.

The GLM fit was applied to different subsets of the data: (i) including all trials
(Fig. 4) or (ii) including only trials after a correct response (Supplementary Fig. 4)
and also to the datasets corresponding to the two passive stages, where the animals
were presented the same set of stimuli in a passive manner (Supplementary Fig. 6).
In analysis (i), the GLM included all regressors as specified in equation (3). For
each regressor and neuron, statistical significance was assessed using a permutation
test that sampled the null hypothesis. We shuffled each neuron’s spike count across
trials and fitted the model on each of 10,000 random shuffles. We defined the
probability that a particular regressor was not modulating neuron’s spike count by
the fraction of samples that fell above or below the real regressor value for oi40 or
oio0, respectively. Two-tailed P values for each regressor and neuron were twice
that fraction. The reported fraction of neurons (Fig. 4; Supplementary Figs 4 and 8)
was the number of neurons that had the firing rate significantly modulated by
each task-variable over the total number of neurons used in the analysis.
We preferred employing a permutation to test for significance in the regressors
against more traditional methods that assume that the residuals are
Gaussian20,47,51, because the residuals that we observed in our data were strongly
non-Gaussian. Furthermore, permutation tests are in general more conservative
(lower probability of type I errors). Finally, permutation tests sample the null
hypothesis while taking into account correlations in the regressors. Note that it is
not necessary to apply Bonferroni correction in our case as we always included all
variables of interest in the GLM simultaneously rather than running individual
tests for each variable separately.

In analysis (ii) only regressors from the previous and the current trials were
included, except for R� 1 which, by construction, was constant for this particular
set of trials. Regressors from previous trials were not included to avoid overfitting
due to the reduced set of trials for this analysis. After correct trials, regressors C� 1

and X� 1 were equivalent and the pair was treated as a single-variable. In
Supplementary Fig. 4 fractions of neurons encoding C� 1 and X� 1 were reported
separately only to allow a better comparison with Fig. 4. Significance of each
regressors was tested using a permutation test. We also fitted the GLM using only
trials after an incorrect response. The procedure was identical to (ii) but in this
case, because of the experimental protocol, �C� 1 and X� 1 and S0 were identical
and EV0 and D� 1 were identical as well.

For the passive stages all trials were used. The set of regressors in this particular
case comprised current stimulus S0, current expected value or difficulty EV0,
second-order prior X� 1 (from � 1 to � 3 trials in back) and previous difficulty
D� 1 (from � 1 to � 3 trials in back as well). It is important to note that because in
the passive stage rewards are not delivered, the second-order prior variable X� 1 is
undefined. However, in the decision-making stage the second-order prior variable
is equivalent to the previous stimulus for all trials, that is, X� 1¼ S� 1. Thus,
we take S� 1 in the passive stages as the analogous to the state-space in the
decision-making task. The reported fraction of neurons (Supplementary Fig. 6) was
the number of neurons that had the firing rate significantly modulated by each
task-variable over the total number of neurons used in the analysis. Significance for
each regressor was calculated as described above.

For each regressor a binomial test was used to assess if the fraction of neurons
that had their firing rates modulated by that particular regressor was significantly
greater than chance20,51 (5%; one-tailed). Statistical significance for the difference
in fractions between two conditions was tested by a non-parametric difference
binomial test that sampled the null hypothesis as follows. Independent samples

from two identical binomial distributions were drawn 10,000 times and the null
hypothesis was built as the difference of these binomial processes. The expected
values of the two identical binomial processes were the weighted mean of the two
fractions to be compared. We defined the probability that the two fractions were
instances of the same underlying binomial process by the proportion of samples
that fell above the observed fraction difference. The reported one-tailed P values
corresponded to that proportion. One-tailed P values were used instead of
two-tailed P values because the study’s hypothesis was to test whether previous trial
regressors (such as previous choice C� 1 or previous second-order prior X� 1) were
decreasing over the course of the trial, and whether upcoming choice C0 was
increasing as rats went through trial’s stages. For the case of upcoming stimulus S0

and upcoming expected value EV0 our hypothesis was that they had to peak during
the stimulus presentation period.

It is important to note that it is not possible to directly compare the fractions of
neurons with significant regressors after correct, incorrect or all trials, because of
the large difference on the correlation structure among regressors across
conditions. First, several task variables that are different on after-correct trials
become the same variable for after-incorrect trials, and vice versa. For instance,
X� 1 and C� 1 are the same variable after correct trials, while after incorrect trials
X� 1, �C� 1 and S0 are all three the same variable, and EV0 and D� 1 are again the
same. In addition, as depicted in Fig. 1d, rats after an incorrect response tend to
switch choice more often than repeat the same choice after a correct response.
Therefore, the regressor C� 1 is more strongly correlated with C0 after an incorrect
response than after a correct response. The differential increase of correlations
between regressors, when conditioned after correct or incorrect trials and the
resulting differential biases obtained from fitting a model precluded a direct
comparison of the reported fractions of significant neurons across conditions.

Correlation of regression weights. We tested the stability of the neuronal
representations over time by correlating the fitted values of weights in the GLM
across different time periods. Correlations among weights could simply arise
because of different responsiveness of the neurons, such that for instance when a
neuron that is more responsive in the pre-stimulus period might also be more
responsive in the offset stimulus period. To avoid creating correlations due to
differences in overall firing rate across neurons in the population, we first
normalized each firing rate by subtracting and dividing it by its mean and s.d.
respectively (z-score) for a particular time window. This normalization can result
in negative normalized rates, violating the assumptions of the previously used GLM
model since a natural logarithmic function was used (equation 2). To overcome
this problem, we instead fitted the data by linear regression (see previous section).
Supplementary Fig 8 shows that using linear regression instead of a GLM (Fig. 4)
does not qualitatively change the results. Subsequent analysis for correlated
weights was performed on the linear regression coefficients, using the same set of
regressors, equation 3, as for the GLM.

Stability of the neuronal representation for each variable (for example, the
upcoming choice C0) across the trial was assessed by using the correlation
coefficient (Pearson correlation) between two vectors, each with the ith entry being
the regression coefficient for that variable (for example, upcoming choice C0) of
neuron i, computed at two different periods, namely pre-stimulus and stimulus
offset periods (Fig. 5a) or stimulus offset and choice periods (Fig. 5b). Statistical
significance of the correlation coefficient was assessed by a permutation test that
sampled the null hypothesis. For each regressor (for example, upcoming choice C0)
the null-hypothesis distribution was built from the set of correlation coefficients
obtained after shuffling the relationship between each neuron’s z-scored firing rate
and the regressor, and computing their respective Pearson correlation coefficient as
before. This process was repeated 10,000 times. We defined the probability that a
particular regressor was not stable across time by the fraction of samples that fell
above the real correlation coefficient value (if r40) or below the real correlation
coefficient value (if ro0). The reported two-tailed P values for each regressor were
twice that fraction.

We tested whether the second-order prior and upcoming choice at trial
initiation are encoded by the same neurons. Unfortunately, we cannot use the same
approach as just described, as computing the vectors of the regressors across
neurons for both X� 1 the C0, and then computing the correlation coefficient
between then will lead to biases due to using two regressors from the same model
in the same dataset51. We avoided this problem by instead computing regression
weights for each variable while fixing the value of the other variable, as follows. We
first restricted our analysis to trials that followed a correct response and focused on
the pre-stimulus period, where only information about two variables is found,
C0 and X� 1 (see Supplementary Figs 4 and 8b shows how the linear regression
model gives qualitatively similar results as the GLM model when focusing on trials
that followed correct responses). The weights for C0 were therefore computed by
fitting the model on the subset of trials where the variable X� 1 was constant
(C� 1¼X� 1 for this particular set of trials; see previous section). This conditioning
procedure ensured that the estimated weight for C0 was not affected by its intrinsic
correlation with X� 1. Because X� 1 is a binary variable, the reported weight for C0

was the mean between the weight estimated for set of trials where X� 1¼ 1 and
where X� 1¼ � 1. The same procedure was applied for the weight associated to
X� 1, where again the final weight for this variable was the mean between the
weight fitted on the subset of trials where C0¼ 1 and C0¼ � 1. The reported
correlation coefficient was computed from two vectors, one composed of the mean
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weight for C0 (mean across conditionings X� 1¼ 1 and X� 1¼ � 1) of each neuron
i, and the other composed of the mean weight for X� 1 (mean across conditionings
C0¼ 1 and C0¼ � 1) of each neuron i.

Statistical significance of the correlation coefficient was again assessed by a
permutation test that sampled the null hypothesis. The null-hypothesis distribution
was built from the set of correlation coefficients obtained after shuffling the
relationship between each neuron’s z-scored firing rate and the regressors, and
yielded one correlation coefficient sample by following the same computations as
described in the previous paragraph. This process was repeated 10,000 times. We
defined the probability that neurons encoding C0 do not tend to encode X� 1 by the
fraction of samples that fell above the real correlation coefficient value (if r40) or
below the real correlation coefficient value (if ro0). The reported two-tailed
P values for each regressor were twice that fraction.

Population decoding. Small populations (two or three neurons) of simultaneously
recorded single-neurons were used to classify a set of trials as belonging to either
class 1 or class 2 (for example, class 1 and class 2 can correspond to short and long
choices for the variable C0, or to correct and incorrect responses for the variable
R� 1). Classification is based on a decision variable DV: when DV40 the trial is
classified as class 1, and when DVo0 the trial is classified as belonging to class 2.
The decision variable DV is a weighted sum of the population activity
DV ¼

PN
i¼1 oiri þo0, where oi and ri are each neuron’s contribution to the

decision variable and spike rate respectively, o0 is the offset term, and N is the total
number of neurons used in the classifier. Logistic regression assumes that the
probability of class 1 to be the correct class given the activity pattern of the
population is given by p class1j rif gð Þ ¼ sð

PN
i¼1 oiri þo0Þ, where s( � ) is the

logistic function. The model was trained and tested using five-fold cross validation.
For most sessions, the number of trials belonging to class 1 did not match the

number of trials belonging to class 2, in other words, conditions were unbalanced.
We addressed this problem by subsampling64,65, which consists in balancing the
number of trials for the two classes by randomly excluding trials from the most
populated class. A large imbalance can be problematic when comparing classifier’s
performance among data sets: if class 1 and class 2 are unbalanced, then Decoding
Performance (DP) can be larger than chance (DP¼ 0.5) even when there is no
information in any of the regressors. Subsampling was repeated 20 times. Each
time the model was trained and tested by 5-fold cross validation. The reported
decoding performance (DP; fraction of correct classifications) corresponds to the
mean DP over all recording sessions, subsampling and cross-validation iterations.

Statistical significance of DP was tested using a permutation test that sampled
the null hypothesis. For the set of trials (the whole recording session when class 1
and class 2 were balanced and the particular subsampling iteration when class 1
and class 2 were unbalanced) we shuffled each trial’s class label and estimated DP
through the five-fold cross-validation method (20 repetitions for the
subsamplings). This procedure was repeated 1,000 times. Each of the samples of the
null hypothesis distribution was computed as the mean across recording sessions,
subsampling and cross-validation for a particular shuffling iteration. We defined
the probability that the neuronal ensemble had no information about that
particular task variable by the fraction of samples that fell above the real DP.
The reported one-tailed P values were that fraction.

Conditioned population decoding. As many of the variables are partially
correlated (for example, choice with stimulus), being able to decode one of them
necessarily means that we can decode the others. To test if we can read out both of
a pair of partially correlated variables independently, we performed a conditioning
decoding analysis in which we tested for information of one variable while keeping
the values of the other variable fixed (Fig. 6). We restricted our analysis to trials
after correct responses. As shown in Supplementary Fig. 4, the GLM analysis
revealed that single-neurons seemed to encode only two variables: upcoming choice
C0 and second order prior X� 1. We therefore decoded upcoming choice C0

by fitting a classifier on the subset of trials where X� 1¼ 1 and X� 1¼ � 1
independently (subsampling method and five-fold cross validation, see previous
section). The reported DP when classifying upcoming choice given second-order
prior was the mean between the two conditioned DP. To decode X� 1 the same
procedure was applied but conditioning on each of the two possible values of C0

instead. The reported DP when classifying second order prior given upcoming
choice was the mean between the two conditioned DP. In this way, even though
decoded quantities might be correlated, reported population information content
about C0 and X� 1 could not be explained simply by a correlation to other variables
(Fig. 6). P values were computed using a permutation test, as described in previous
section.

Information ranking. We used decoding performance (DP) for each variable
that was deemed significant by the GLM analysis as a proxy for the amount of
information that the neuronal population contained about that variable (Fig. 4).
DP is computed as described above. Our analysis provides the intuitive result that
decoding performance increases with the number of neurons in the ensemble
(Figs 6 and 7). Some previous population analysis violated this due to misusing
linear classifiers66.

Data availability. The datasets generated in this study and the code used for their
analysis are available from the corresponding author upon reasonable request.
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