299 research outputs found

    Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients

    Full text link
    Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.Comment: 25 page

    Effects of interactions on the relaxation processes in magnetic nanostructures

    Get PDF
    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations

    The comparative effectiveness and efficiency of cognitive behaviour therapy and generic counselling in the treatment of depression: evidence from the 2(nd) UK National Audit of psychological therapies.

    Get PDF
    BACKGROUND: Cognitive Behaviour Therapy (CBT) is the front-line psychological intervention for step 3 within UK psychological therapy services. Counselling is recommended only when other interventions have failed and its effectiveness has been questioned. METHOD: A secondary data analysis was conducted of data collected from 33,243 patients across 103 Improving Access to Psychological Therapies (IAPT) services as part of the second round of the National Audit of Psychological Therapies (NAPT). Initial analysis considered levels of pre-post therapy effect sizes (ESs) and reliable improvement (RI) and reliable and clinically significant improvement (RCSI). Multilevel modelling was used to model predictors of outcome, namely patient pre-post change on PHQ-9 scores at last therapy session. RESULTS: Counselling received more referrals from patients experiencing moderate to severe depression than CBT. For patients scoring above the clinical cut-off on the PHQ-9 at intake, the pre-post ES (95% CI) for CBT was 1.59 (1.58, 1.62) with 46.6% making RCSI criteria and for counselling the pre-post ES was 1.55 (1.52, 1.59) with 44.3% of patients meeting RCSI criteria. Multilevel modelling revealed a significant site effect of 1.8%, while therapy type was not a predictor of outcome. A significant interaction was found between the number of sessions attended and therapy type, with patients attending fewer sessions on average for counselling [M = 7.5 (5.54) sessions and a median (IQR) of 6 (3-10)] than CBT [M = 8.9 (6.34) sessions and a median (IQR) of 7 (4-12)]. Only where patients had 18 or 20 sessions was CBT significantly more effective than counselling, with recovery rates (95% CIs) of 62.2% (57.1, 66.9) and 62.4% (56.5, 68.0) respectively, compared with 44.4% (32.7, 56.6) and 42.6% (30.0, 55.9) for counselling. Counselling was significantly more effective at two sessions with a recovery rate of 34.9% (31.9, 37.9) compared with 22.2% (20.5, 24.0) for CBT. CONCLUSIONS: Outcomes for counselling and CBT in the treatment of depression were comparable. Research efforts should focus on factors other than therapy type that may influence outcomes, namely the inherent variability between services, and adopt multilevel modelling as the given analytic approach in order to capture the naturally nested nature of the implementation and delivery of psychological therapies. It is of concern that half of all patients, regardless of type of intervention, did not show reliable improvement

    Terahertz radiation driven chiral edge currents in graphene

    Get PDF
    We observe photocurrents induced in single layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left- to right-handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.Comment: 4 pages, 4 figure, additional Supplemental Material (3 pages, 1 figure

    Classical to quantum crossover of the cyclotron resonance in graphene: A study of the strength of intraband absorption

    Full text link
    We report on absolute magneto-transmission experiments on highly-doped quasi-free-standing epitaxial graphene targeting the classical-to-quantum crossover of the cyclotron resonance. This study allows us to directly extract the carrier density and also other relevant quantities such as the quasiparticle velocity and the Drude weight, which is precisely measured from the strength of the cyclotron resonance. We find that the Drude weight is renormalized with respect to its non-interacting (or random-phase-approximation) value and that the renormalization is tied to the quasiparticle velocity enhancement. This finding is in agreement with recent theoretical predictions, which attribute the renormalization of the Drude weight in graphene to the interplay between broken Galilean invariance and electron-electron interactions.Comment: 12 pages, 4 figure

    High-dose oral vitamin D supplementation and mortality in people aged 65-84 years: the VIDAL cluster feasibility RCT of open versus double-blind individual randomisation.

    Get PDF
    BACKGROUND: Randomised controlled trials demonstrating improved longevity are needed to justify high-dose vitamin D supplementation for older populations. OBJECTIVES: To demonstrate the feasibility of a large trial (n ≈ 20,000) of high-dose vitamin D in people aged 65-84 years through general practitioner (GP) practices, and to cluster randomise participating practices between open-label and double-blind randomisation to compare effects on recruitment, compliance and contamination. DESIGN: Twenty GP practices were randomised in matched pairs between open-label and double-blind allocation. Within each practice, patients were individually randomised to vitamin D or control (i.e. no treatment or placebo). Participants were invited to attend their GP practice to provide a blood sample and complete a lifestyle questionnaire at recruitment and again at 2 years. Randomisation by telephone followed receipt of a serum corrected calcium assay confirming eligibility ( 400 IU vitamin D per day at 2 years was 5.0% in open practices and 4.8% in double-blind practices. Mean serum 25(OH)D concentration was 51.5 nmol/l [95% confidence interval (CI) 50.2 to 52.8 nmol/l] with 82.6% of participants < 75 nmol/l at baseline. At 2 years, this increased to 109.6 nmol/l (95% CI 107.1 to 112.1 nmol/l) with 12.0% < 75 nmol/l in those allocated to vitamin D and was unaltered at 51.8 nmol/l (95% CI 49.8 to 53.8 nmol/l) in those allocated to no vitamin D (no treatment or placebo). CONCLUSIONS: A trial could recruit 20,000 participants aged 65-84 years through 200 GP practices over 2 years. Approximately 80% would be expected to adhere to allocated treatment (vitamin D or placebo) for 5 years. The trial could be conducted entirely by e-mail in participants aged < 80 years, but some participants aged 80-84 years would require postal follow-up. Recruitment and treatment compliance would be similar and contamination (self-administration of vitamin D) would be minimal, whether control participants are randomised openly to no treatment with no contact during the trial or randomised double-blind to placebo with monthly reminders. TRIAL REGISTRATION: Current Controlled Trials ISRCTN46328341 and EudraCT database 2011-003699-34. FUNDING: This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 10. See the NIHR Journals Library website for further project information

    The imprint of stratospheric transport on column-averaged methane

    Get PDF
    Model simulations of column-averaged methane mixing ratios (XCH4) are extensively used for inverse estimates of methane (CH4) emissions from atmospheric measurements. Our study shows that virtually all chemical transport models (CTM) used for this purpose are affected by stratospheric model-transport errors. We quantify the impact of such model transport errors on the simulation of stratospheric CH4 concentrations via an a posteriori correction method. This approach compares measurements of the mean age of air with modeled age and expresses the difference in terms of a correction to modeled stratospheric CH4 mixing ratios. We find age differences up to ~ 3 years yield to a bias in simulated CH4 of up to 250 parts per billion (ppb). Comparisons between model simulations and ground-based XCH4 observations from the Total Carbon Column Network (TCCON) reveal that stratospheric model-transport errors cause biases in XCH4 of ~ 20 ppb in the midlatitudes and ~ 27 ppb in the arctic region. Improved overall as well as seasonal model-observation agreement in XCH4 suggests that the proposed, age-of-air-based stratospheric correction is reasonable. The latitudinal model bias in XCH4 is supposed to reduce the accuracy of inverse estimates using satellite-derived XCH4 data. Therefore, we provide an estimate of the impact of stratospheric model-transport errors in terms of CH4 flux errors. Using a one-box approximation, we show that average model errors in stratospheric transport correspond to an overestimation of CH4 emissions by ~ 40 % (~ 7 Tg yr−1) for the arctic, ~ 5 % (~ 7 Tg yr−1) for the northern, and ~ 60 % (~ 7 Tg yr−1) for the southern hemispheric mid-latitude region. We conclude that an improved modeling of stratospheric transport is highly desirable for the joint use with atmospheric XCH4 observations in atmospheric inversions

    Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene

    Get PDF
    We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.Comment: to appear in Nano Letter
    • …
    corecore